Post Reply 
(34S) Integration (using the double-exponential method)
03-24-2017, 02:23 PM (This post was last modified: 04-02-2017 01:08 PM by emece67.)
Post: #3
RE: (WP-34S) Integration (using the double-exponential method)
And this last one is that aimed to replace the built-in integration program.
Code:

// Double Exponential Integration for the wp34s calculator
//
// v1.3x-398 (20170104) by M. César Rodríguez GGPL
//
// USAGE:
//  Inputs:
//    - integration limits in X (upper limit) and Y (lower limit)
//  Outputs:
//    - approximate value of integral in X
//    - estimated error in Y
//    - upper integration limit in Z
//    - lower integration limit in T
//    - updates L (with upper limit)
//    - in SSIZE8 mode, all ABCD will be corrupted
//
//  Remarks:
//    - accepts +Infinite and -Infinite as integration limits. If none
//      of the limits is infinite, the method applied is the tanh-sinh
//      one. If both are infinite then the sinh-sinh method is selected.
//      Otherwise the exp-sinh method is used
//    - the program tries to get all displayed digits correct, so
//      increasing the number of displayed digits will (hopefully) give
//      closer approximations (needing more time). But, in DBLON mode, the
//      program ignores the number of displayed digits and does its best
//      to get as much correct digits as possible
//    - during program execution the succesive aproximations are
//      displayed (as with the built-in integration program). Pressing
//      [<-] will interrupt the program & the last approximation
//      will be returned. The estimated error will be 0 in this case
//    - if the computed error estimation is not much smaller than the computed
//      result, it is assumed that all digits of the result are corrupted by
//      roundoff. In such cases, the reported result is 0 and the reported
//      error estimation equals the sum of the absolute values of the computed
//      result and error. This usually happens when the integral evaluates to 0
//    - if the user has set the D flag, many errors when evaluating the
//      integrand (say 0/0 or 1/0, overflows or ...) will not raise an error,
//      but return infinite or NaN instead. Such conditions will be detected
//      by this program that will continue the computation simply ignoring
//      the offending point
//    - keep in mind that, when both integration limits are infinite (or
//      one is infinite and the other 0) the integrand may be evaluated
//      at really bigs/small points (up to 1e±199 in DBLOFF mode and
//      1e±3088 in DBLON mode). Ensure that your integrand program
//      behaves as expected for such arguments (you may consider to set
//      flag D in some circumstances)
//    - the double exponential method relies on the function to be
//      integrated being analytic over the integration interval, except,
//      perhaps, at the interval ends. Thus, if it is known that the
//      integrand, _or any of its derivatives_, has a discontinuity at some
//      point inside the integration interval, it is advised to break the
//      interval at such point and compute two separate integrals, one
//      at each side of the problematic point. Better results will be
//      get this way. Thus, beware of abs, fp, ip and such non analytic
//      functions inside the integrand program. Other methods (Romberg)
//      may behave better in this respect, but, on the other side, the
//      double exponential method manages discontinuities (of the
//      integrand or its derivatives) at the interval edges better and
//      is usually way faster that the Romberg method
//    - as many other quadrature methods (Romberg included), the
//      double exponential algorithm does not manage well highly
//      oscillatory integrands. Here, highly oscillatory means that the
//      integrand changes sign many (or infinite) times along the
//      integration interval
//
//  Method used:
//    The algorith used here is adapted from that described in:
//      H. Takahasi and M. Mori. "Double Exponential Formulas for Numerical
//      Integration." Publications of RIMS, Kyoto University 9 (1974),
//      721-741.
//    Another useful reference may be:
//      David H. Bailey, Xiaoye S. Li and Karthik Jeyabalan, "A comparison
//      of three high-precision quadrature schemes," Experimental
//      Mathematics, vol. 14 (2005), no. 3, pg 317-329.
//
// 263 steps
// 16 local registers

              XLBL"INTEGRATE" // Double-Exponential Integration
                INTM?       // check for invalid mode
                  ERR ERR_BAD_MODE
                LocR 16     // Local registers and flags:

// local registers
#define XB    .00   // backup of X (b)
#define YB    .01   // backup of Y (a)
#define bma2  .02   // (b - a)/2, a & b are the integration limits
#define bpa2  .03   // (b + 2)/2
#define eps   .04   // epsilon
#define thr   .05   // convergence threshold
#define lvl   .06   // level counter
#define tm    .07   // maximum abscissa in the t domain
#define h     .08   // space between abscissas in the t domain
#define ssp   .09   // partial sum at each level
#define j     .10   // abscissa counter
#define ch    .11   // cosh(t)
#define w     .12   // weight
#define rp    .13   // abscissa (r) or fplus + fminus (p)
#define ss    .14   // value of integral
#define ss1   .15   // previous ss

// local flags
#define DF    .00   // backup of D flag
#define rev   .01   // b is < a
#define ES    .02   // expsinh mode
#define bpa2z .03   // bpa2 is zero in sinhsinh or expsinh modes
#define left  .04   // expsinh case with -Infinite limit
#define TS    .05   // tanhsinh mode
#define lg0   .06   // true if level > 0

                FS?S D      // backup & set flag D, specials are not errors here
                  SF DF
                cSTO XB     // save XY (ba)
                // check arguments  ************************************
                NaN?        // check for invalid limits
                  JMP DEI_bad_rng   // b is NaN, exit
                x<>y
                NaN?
                  JMP DEI_bad_rng   // a is NaN, exit
                x=? Y       // check for equal limits
                  JMP DEI_0         // a == b, return 0
                // set mode flags, bma2 and bpa2  **********************
                x>? Y       // a > b?
                  SF rev    // yes, flag it
                INF?        // a == ±inf?
                  SF ES     // yes, flag it (temporarily in ES)
                x<>y
                INF?        // b == ±inf?
                  SF bpa2z  // yes, flag it (temporarily in bpa2z)
                // set the ES, bpa2z, left & TS flags according to the
                // a & b values ++++++++++++++++++++++++++++++++++++++++
                FS? ES      // was a == ±inf?
                  FC? bpa2z // was b != ±inf?
                    JMP DEI_inf_1   // skip if a != ±inf or b != ±inf
                _INT 000    // here in the sinhsinh case  --------------
                _INT 002    // 2*bpa2 = 0, 2*bma2 = 2
                CF ES       // as this flag was dirty
                JMP DEI_ba2_rdy     // done with sinhsinh
DEI_inf_1::     FC? ES      // was a != ±inf?
                  FS? bpa2z // was b == ±inf?
                    JMP DEI_inf_2   // skip if a == ±inf or b == ±inf
                cENTER      // here in the tanhsinh case  --------------
                +           // 2*bpa2 ready
                x<> Z
                -
                ABS         // 2*bma2 ready
                SF TS       // flag the tanhsinh case
                JMP DEI_ba2_rdy     // done with tanhsinh
DEI_inf_2::     INF?        // here in the expsinh case ----------------
                  x<>y      // now X is the finite limit
                x>? Y       // finite limit > infinite one?
                  SF left   // yes, left case
                RCL+ X      // 2*bpa2 ready
                CF bpa2z    // as this flag was dirty
                x=0?        // finite limit == 0?
                  SF bpa2z  // yes, flag it
                SF ES       // flag the expsinh case
                _INT 002    // 2*bma2 ready
DEI_ba2_rdy::   _INT 002    // here with 2*bpa & 2*bma2 on stack
                /           // and mode flags ready
                STO bma2    // save bma2
                x<>y
                RCL/ L
                STO bpa2    // save bpa2
                // done with mode flags, bpa2 and bma2  ****************
                // compute precision parameters ************************
                _INT 034    // 34 digits in DBLON mode
                +/-
                DBL?        // in DBL mode use all digits
                  JMP DEI_dbl
                _INT 009    // otherwise use displayed digits + 3,
                1/x         // let's get the number of displayed digits
                ROUND
                RCL- L
                EXPT        // now X is -(number of displayed digits + 1)
                _INT 002
                -           // -(the number of displayed digits + 3)
DEI_dbl::       ENTER       // here X = -(number of displayed + 3) (or -34)
                10^x
                STO eps     // save epsilon
                SQRT        // compute the convergence threshold, thr,
                SDL 001     // = 10*sqrt(epsilon)
                STO thr     // save the convergence threshold
                DROP
                ABS         // compute the maximum level
                LB
                ROUNDI
                _INT 002
                +           // maxlevel = round(log2(digits)) + 2
                STO lvl     // save level
                FC? bpa2z   // the sinhsinh case and the expsinh case
                  JMP DEI_tanhsinh  // when the finite limit == 0 can use a
                _INT 001    // smaller epsilon
                _INT 000
                NEIGHB
                STO eps     // save epsilon for such cases
                // precision parameters (epsilon, thr, level) ready ****
                // compute maximum t value (tm) ************************
                // tm is computed in such a way that all abscissas are
                // representable at the given precision and that the
                // integrand is never evaluated at the limits
DEI_tanhsinh::  FC? TS      // tanhsinh mode?
                  JMP DEI_ss_es     // no, check other modes
                _INT 001    // start tm computation for tanh-sinh mode
                RCLMIN bma2
                RCL+ X      // X = 2*MIN(1, bma2)
                JMP DEI_cont        // goto remaining tm calculation
DEI_ss_es::     FS? bpa2z   // neither SS nor ES with 0 limit?
                  JMP DEI_ss_es0    // no, must be SS or ES with 0 limit
                _INT 1/2    // start tm computation for ES with != 0 limit
                RCL/ bpa2
                ABS         // X = ABS(1/(2*bpa2))
                JMP DEI_cont        // goto remaining tm calculation
DEI_ss_es0::    RCL eps     // start tm computation for SS & ES0 cases
                SQRT        // X = SQRT(eps)
DEI_cont::      RCL/ eps    // continue tm computation for all cases
                LN
                FC? TS      // not in TS mode?
                  RCL+ X    // 2*ln(...) for all cases except TS
                RCL+ X      // 4*ln(...) for all cases except TS (2*LN(...))
                PI
                /
                LN
                STO tm      // tm done
                // maximum t (tm) ready ********************************
                // level loop ******************************************
                _INT 002
                STO h       // h = 2
DEI_lvl_loop::  _INT 000
                STO ssp     // ssp = 0
                _INT 001
                STO j       // j = 1
                _INT 002
                STO/ h      // h /= 2
                RCL h       // X = t
                // j loop ++++++++++++++++++++++++++++++++++++++++++++++
                // compute abscissas and weights  ----------------------
DEI_j_loop::    COSH        // cosh(t) (cosh is much faster than sinh/tanh)
                STO ch      // save for later
                x^2
                DEC X
                SQRT
                Num PIon2
                *           // pi/2*sqrt(cosh(t)^2 - 1) = pi/2*sinh(t)
                FS? ES      // ES mode?
                  EXP       // yes, want EXP
                FC? ES
                  COSH      // no, want COSH
                FILL
                FC? TS      // TS mode?
                  JMP DEI_not_ts    // no, done with w (for ES, SS cases)
                x^2         // end weight computation for TS mode
                1/x
DEI_not_ts::    STO w       // save weight
                DROP        // stack filled with exp/cosh of pi/2*sinh(t)
                FS? ES      // ES mode?
                  JMP DEI_es_skip   // yes, skip this part
                x^2         // no ES mode, get r (the abscissa in the
                DEC X       // normalized domain)
                SQRT
DEI_es_skip::   FS? TS      // TS mode?
                  RCL/ Y    // yes, adjust r
                FS? left    // ES mode -infinity?
                  +/-       // yes, adjust r
                STO rp      // save normalized abscissa
                // done with abscissas and weights  --------------------
                // evaluate integrand ----------------------------------
                RCL* bma2   // r*(b - a)/2
                RCL+ bpa2   // (b + a)/2 + r*(b - a)/2
                GSB DEI_xeq_user    // f(bpa2 + bma2*r)
                RCL* w      // fplus*w
                x<> rp      // p = fplus*w stored, r in X
                RCL bpa2    // (b + a)/2
                RCL bma2    // (b - a)/2
                FS? ES      // ES mode?
                  JMP DEI_es_mode
                RCL* Z      // no ES mode, "normal" abscissa
                -
                JMP DEI_call_usr_m
DEI_es_mode::   RCL/ Z      // ES mode, "inverse" abscissa
                +           // X = (b + a)/2 ± (b - a)/2*(r or 1/r)
DEI_call_usr_m:: GSB DEI_xeq_user   // f(bpa2 ± bma2*(r or 1/r))
                FS? ES      // ES mode?
                  RCL/ w    // ES mode, inverse weight, fminus/w
                FC? ES
                  RCL* w    // no ES mode, normal weight, fminus*w
                RCL+ rp     // p = fplus*w + fminus*(w or 1/w)
                RCL* ch     // X = ch*p
                SPEC?
                  _INT 000  // safety check for weight
                STO+ ssp    // ssp += p
                // done with integrand  --------------------------------
                // level 0 is special ----------------------------------
                FC? lg0     // is level == 0?
                  JMP DEI_updte_j   // yes, go to next level
                INC j       // no, sweep odd abscissas, j += 1
                ABS         // X = ABS(p)
                RCL ssp
                RCL* eps
                ABS         // X = ABS(ssp*eps), Y = ABS(p)
                x>=? Y      // ABS(p) <= ABS(eps*eps)?
                  JMP DEI_j_exit    // then done with level
                // and check user interrupt ............................
                KEY? Y      // any key?
                  JMP DEI_updte_j   // no, continue
                _INT 035    // yes, check keycode for [<-]
                x!=? Z      // key is not [<-]?
                  JMP DEI_updte_j   // it is not [<-], continue
                RCL ss1     // it is, recall the last computation
                JMP DEI_chk_bad     // and exit (checking big error results)
                // call user's function  -------------------------------
DEI_xeq_user::    SPEC?     // abscissa is good?
                    JMP DEI_bad_absc  // no, skip point
                  FC? DF    // honour the user's D flag setting
                    CF D
                  XEQUSR
                  POPUSR
                  SPEC?     // do not stop in error (if flag D was set)
                    _INT 0
                  SF D      // set flag D for internal calculations
                RTN
DEI_bad_absc::    _INT 000
                RTN
                // if level > 0 done  ----------------------------------
DEI_updte_j::   INC j       // j += 1
                RCL j       // X = j
                RCL* h      // X = t = j*h
                x<=? tm     // t <= tm?
                  JMP DEI_j_loop    // yes, continue j loop
                // done with j loop ++++++++++++++++++++++++++++++++++++
DEI_j_exit::    RCL ssp     // no, update ss. X = ssp
                STO+ ss     // ss += ssp
                FS? lg0     // is level > 0 ----------------------------
                  JMP DEI_chk_conv  // yes, progress to next level
                _INT 001    // no, add 1st series term
                FS? left    // left?
                  +/-
                RCL bpa2    // (b + a)/2
                FS? ES      // ES mode?
                  +
                GSB DEI_xeq_user    // f(bpa2 (+/-1 in ES mode))
                STO+ ss     // ss += f(bpa2)
                // done with level 0  ----------------------------------
                // apply constant coeffs to sum ------------------------
DEI_chk_conv::  RCL ss
                RCL* bma2 // ss*bma2
                RCL* h    // ss*bma2*h
                Num PIon2
                *         // ss*bma2*h*pi/2
                FS? rev   // reverse?
                  +/-     // yes,so change sign
                // done with constant coeffs  --------------------------
                // show progress  --------------------------------------
                TOP?        // show value of approximation
                  MSG MSG_INTEGRATE
                // check convergence  ----------------------------------
                RCL ssp
                RCL+ X      // 2*ssp
                RCL- ss     // 2*ssp - ss
                ABS         // ABS(2*ssp - ss)
                RCL thr
                RCL* ss     // thr*ss
                ABS         // ABS(thr*ss)
                x>? Y       // ABS(2*ssp - ss) < ABS(thr*ss)?
                  JMP DEI_fin       // yes, computation done
                z<> ss1     // no, save ss (with all coeffs applied)
                SF lg0      // mark level 0 done,
                DSL lvl     // update level &...
                  JMP DEI_lvl_loop  // loop.
DEI_fin::       RCL Z       // recall result
                // done with level loop ********************************
                // compute error estimation and check for bad results **
                // here with result in X
DEI_chk_bad::   RCL X       // stack: ss-ss-?-?
                ABS         // stack: |ss|-ss-?-?
                RCL Y       // stack: ss-|ss|-ss-?
                RCL- ss1    // stack: (ss-ss1)-|ss|-ss-?
                ABS         // stack: err-|ss|-ss-?
                RCL X       // stack: err-err-|ss|-ss
                SDL 001     // stack: 10*err-err-|ss|-ss
                x<? Z       // 10*err < |ss|?
                  JMP DEI_res_okay  // yes, assume result is OK
                x<> Z       // no, bad result. stack: |ss|-err-10*err-ss
                +           // stack: new_err-10*err-ss-ss
                _INT 000    // stack: 0-new_err-10*err-ss
                STO T       // stack: 0-new_err-10*err-0
DEI_res_okay::  x<> T       // stack: 0-err-... or ss-err-...
                // done with bad results  ******************************
                //  exit  **********************************************
DEI_exit::      TOP?        // show new computed value (0)
                  MSG MSG_INTEGRATE
                cRCL XB     // stack: b-a-s-ss1
                STO L       // b into L
                cx<> Z      // stack: s-ss1-b-a
                FC? DF      // restore user's D flag (DF)
                  CF D
              RTN           // bye
                // exit cause a == b  **********************************
DEI_0::         _INT 000    // error & result both 0
                JMP DEI_dup_exit
                // exit cause a or b is NaN ****************************
DEI_bad_rng::   Num NaN     // error & result both NaN
DEI_dup_exit::  RCL X
                JMP DEI_exit        // exit

#undef XB
#undef YB
#undef bma2
#undef bpa2
#undef eps
#undef thr
#undef lvl
#undef tm
#undef h
#undef ssp
#undef j
#undef ch
#undef w
#undef rp
#undef ss
#undef ss1

#undef DF
#undef rev
#undef ES
#undef bpa2z
#undef left
#undef TS
#undef lg0
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: (WP-34S) Integration (using the double-exponential method) - emece67 - 03-24-2017 02:23 PM



User(s) browsing this thread: 6 Guest(s)