The following warnings occurred:
Warning [2] count(): Parameter must be an array or an object that implements Countable - Line: 795 - File: showthread.php PHP 7.4.33 (FreeBSD)
File Line Function
/showthread.php 795 errorHandler->error





Post Reply 
QPI: convert decimal to p/q, ln(p/q), p/q*pi, e^(p/q), or sqrt(p/q)
12-11-2013, 05:24 PM (This post was last modified: 01-31-2018 08:20 PM by Han.)
Post: #1
QPI: convert decimal to p/q, ln(p/q), p/q*pi, e^(p/q), or sqrt(p/q)
Jan. 31, 2018: This program now exists in the HP Prime firmware.

This program takes a decimal value and returns a one of the following expressions that is a "close" rational approximation of the specified decimal value:

\[ \frac{p}{q}, \quad \frac{a}{b}\cdot\sqrt{\frac{p}{q}},
\quad \frac{p}{q}\cdot \pi, \quad e^{\frac{p}{q}}, \quad
\text{ or } \quad \ln \left(\frac{p}{q}\right) \]

Also works for complex numbers and lists of real/complex numbers. The main algorithm basically finds the continued fraction representation of a decimal and the process either self-terminates (in the case of a rational value) or terminates due to reaching the accuracy limit. For example,
\[ \frac{47}{13} = 3 + \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}}} \]
To get the continued fraction representation, note that
\[ \frac{47}{13} \approx 3.61538461538 \]
This decimal is converted to a rational expression
\[ \frac{361538461538}{10^{11}} \]
which is converted into the continued fraction as follows:
\[ \frac{361538461538}{10^{11}} = 3 +
\frac{61538461538}{10^{11}} =
3 + \frac{1}{\frac{10^{11}}{61538461538}}
= 3 + \frac{1}{1+ \frac{38461538462}{61538461538}} = \dotsm \]
and so on. While computing the continued fraction, the algorithm simultaneously reduces the partial continued fraction into a rational value of the form \(\frac{p}{q}\). The other forms are merely variations in which the decimal value is either squared, divided by \(\pi\), etc.

Source code below, and also included in attached zip file below.

Code:
// QPI by Han Duong
// ported from QPI 4.3 for the HP48G/GX by Mika Heiskanen & Andre Schoorl

export qpiEXPLN:=100; // max denom for exp(p/q) or ln(p/q)
export qpiMAXINT:=2^20; // largest n allowed for sqrt(n)=a*sqrt(b)
export qpiDIGITS:=10; // controls accuracy (best results at 9 or 10)

qpi_approx();
qpi_asqrtb();
qpi_out();
qpi_outsqrt();
qpi_real();
qpi_complex();
qpi_list();
qpi_root();
qpi_pi();
qpi_ln();
qpi_exp();


EXPORT QPI(r)
BEGIN

  case
    if TYPE(r)==0 then qpi_real(r); end;
    if TYPE(r)==1 then RETURN(r); end;
    if TYPE(r)==3 then qpi_complex(r); end;
    if TYPE(r)==6 then qpi_list(r); end;
    if TYPE(r)==8 then QPI(approx(r)); end;
    DEFAULT msgbox("Object type: " + TYPE(r) + " not supported!");
  end;

END;


qpi_real(r)
BEGIN
  local frac;

  if r then 
    frac:=qpi_approx(r);

    if frac(2)<100 then
      qpi_out(frac);
    else
      qpi_root(r,frac);
    end;
  else
    RETURN(0);
  end;
END;


qpi_complex(c)
BEGIN
  local rpart, ipart;

  rpart:=STRING(qpi_real(RE(c)));
  ipart:=STRING(qpi_real(abs(IM(c))));

  if IM(c)>0 then
    expr("'" + rpart + "+" + ipart + "*'"); // bold i symbol
  else
    expr("'" + rpart + "-" + ipart + "*'"); // bold i symbol
  end;

END;


qpi_list(l)
BEGIN
  local i,n;

  n:=SIZE(l);
  for i from 1 to n do
    l(i):=QPI(l(i));
  end;

  RETURN(l);
  
END;


qpi_root(r,frac)
BEGIN
  local frac1;

  if r^2<500001 then

    frac1:=qpi_approx(r^2);
    if r<0 then frac1(1):=-frac1(1); end;
    frac1(3):=1;
    if (frac1(2)<1000) AND (frac1(2)<=frac(2)) then
      if frac1(2)<10 then
        qpi_out(frac1);
      else
        qpi_pi(r,frac1);
      end;
    else // sqrt denom not smaller
      qpi_pi(r,frac);
    end;    

  else // r^2>500000

    qpi_pi(r,frac);

  end; // end_if r^2<500000
END;


qpi_pi(r,frac)
BEGIN
  local frac1;

  if abs(r/pi)<101 then

    frac1:=qpi_approx(r/pi);
    frac1(3):=2;
    if (frac1(2)<1000) AND (frac1(2)<=frac(2)) then
      if frac1(2)<10 then
        qpi_out(frac1);
      else
        qpi_ln(r,frac1);
      end;
    else // (r/pi) denom not smaller
      qpi_ln(r,frac);
    end;

  else // abs(r/pi)>100

    qpi_ln(r,frac);

  end; // end_if abs(r/pi)<101
END;


qpi_ln(r,frac)
BEGIN
  local frac1,tmp;

  tmp:=e^(r);

  if tmp<1001 then

    // check for LN(0)
    if tmp then
      frac1:=qpi_approx(tmp);
    else
      frac1:=qpi_approx(MINREAL);
    end;
    frac1(3):=3;

    if (frac1(1)*frac1(2)==1) OR (frac1(2)>qpiEXPLN) then

      qpi_exp(r,frac);

    else

      if (frac1(2)<=frac(2)) then
        if frac1(2)<10 then
          qpi_out(frac1);
        else
          qpi_exp(r,frac1);
        end;
      else
        qpi_exp(r,frac);
      end;

    end; // end_if p*q==1 or q>50

  else // e^(r)>1000

    qpi_exp(r,frac);

  end; // end_if e^(r)<1001
END;


qpi_exp(r,frac)
BEGIN
  local frac1;

  if r<0 then
    qpi_out(frac);
  else

    frac1:=qpi_approx(LN(r));
    frac1(3):=4;
    if frac1(2)>qpiEXPLN then
      qpi_out(frac);
    else
      if frac1(2)<=frac(2) then
        qpi_out(frac1);
      else
        qpi_out(frac);
      end;
    end;

  end;
END;


// returns frac(t+1) where
// frac:={p/q, sqrt(p/q), p/q*pi, ln(p/q), e^(p/q)}
// and list:={p,q,t}
qpi_out(list)
BEGIN
  local s0="(", s1=")'";

  if list(3)==1 then

    qpi_outsqrt(list);

  else

    if list(1)<0 then s0:="-" + s0; end;
    if list(3) then s1:=")" + s1; end;

    case
      if list(3)==2 then s1:=")*π'"; end;
      if list(3)==3 then s0:="LN(" + s0; end;
      if list(3)==4 then s0:="e^(" + s0; end;
    end;

    s0:="'" + s0;

    if list(2)==1 then
      expr(s0 + abs(list(1)) + s1);
    else
      expr(s0 + abs(list(1)) + "/" + list(2) + s1);
    end;
  end;
END;


qpi_outsqrt(list)
BEGIN
  local ab1, ab2;
  local s0="'";

  if list(1)<0 then s0:=s0+"-"; end;

  ab1:=qpi_asqrtb(abs(list(1)));
  ab2:=qpi_asqrtb(list(2));

  if ab1(1)<>ab2(1) then
    if ab2(1)==1 then
      s0:=s0 + ab1(1) + "*";
    else
      s0:=s0 + "(" + ab1(1) + "/" + ab2(1) + ")*";
    end;
  end;

  s0:=s0 + "√(";

  if ab2(2)==1 then
    s0:=s0 + ab1(2);
  else
    s0:=s0 + ab1(2) + "/" + ab2(2);
  end;

  expr(s0+")'");
END;


// returns {a,b} where n=a*sqrt(b)
qpi_asqrtb(n) 
BEGIN
  local div,quo,rem,num,den,nodd;

  if n>qpiMAXINT then RETURN({1,n}); end;

  div:=1;
  num:=n;
  den:=4;
  nodd:=3;

  repeat
    quo:=IP(num/den);
    rem:=num MOD den;

    if rem==0 then
      div:=div*(IP(nodd/2)+1);
      num:=quo; 
    else
      nodd:=nodd+2;
      den:=den+nodd;
    end;
  until (quo==0) OR (nodd>qpiMAXINT) end; 

  RETURN({div,num});
END;


// returns {p,q,0} where r=p/q
qpi_approx(r) 
BEGIN
  local num,inum,den,iden;
  local p0,q0,p1,q1,p2,q2;
  local quo,rem;

  if NOT(r) then RETURN({0,1,0}); end;

  num:=abs(r);
  inum:=IP(num);
  den:=1;

  while num-inum do
    num:=num*10;
    den:=den*10;
    inum:=IP(num);
  end;

  iden:=den;

  rem:=den; den:=num; 
  p1:=0; p2:=1;
  q1:=1; q2:=0;

  repeat
    p0:=p1; p1:=p2;
    q0:=q1; q1:=q2;
    num:=den; den:=rem;
    quo:=IP(num/den);
    rem:=num MOD den;
    p2:=quo*p1+p0;
    q2:=quo*q1+q0;
  until 10^qpiDIGITS*abs(inum*q2-iden*p2)<iden*p2 end; 

  if (r>0) then
    RETURN({p2,q2,0});
  else
    RETURN({−p2,q2,0});
  end;
 
END;


.zip  qpi.zip (Size: 18.24 KB / Downloads: 228)

Graph 3D | QPI | SolveSys
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
QPI: convert decimal to p/q, ln(p/q), p/q*pi, e^(p/q), or sqrt(p/q) - Han - 12-11-2013 05:24 PM



User(s) browsing this thread: 1 Guest(s)