ArcTan(x,y)?
|
04-05-2017, 12:20 PM
Post: #2
|
|||
|
|||
RE: ArcTan(x,y)?
(04-05-2017 12:07 PM)toml_12953 Wrote: Is there a single function on the Prime to compute ArcTan(x,y)? ARG((x,y)) = ARG(x+y*i) is like ATAN(y/x) but it respects the quadrants better than ATAN. Here's its description from the 50g AUR (same info applies to the Prime): ARG Type: Function Description: Argument Function: Returns the (real) polar angle θ of a complex number (x, y). The polar angle θ is equal to: • atan y/x for x ≥ 0 • atan y/x + π sign y for x < 0, Radians mode • atan y/x + 180 sign y for x < 0, Degrees mode • atan y/x + 200 sign y for x < 0, Grads mode A real argument x is treated as the complex argument (x,0). <0|ɸ|0> -Joe- |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
ArcTan(x,y)? - toml_12953 - 04-05-2017, 12:07 PM
RE: ArcTan(x,y)? - Joe Horn - 04-05-2017 12:20 PM
RE: ArcTan(x,y)? - toml_12953 - 04-05-2017, 12:26 PM
RE: ArcTan(x,y)? - StephenG1CMZ - 04-05-2017, 03:00 PM
RE: ArcTan(x,y)? - toml_12953 - 04-05-2017, 03:39 PM
RE: ArcTan(x,y)? - StephenG1CMZ - 04-05-2017, 06:22 PM
RE: ArcTan(x,y)? - KeithB - 04-05-2017, 07:28 PM
RE: ArcTan(x,y)? - StephenG1CMZ - 04-05-2017, 07:47 PM
RE: ArcTan(x,y)? - KeithB - 04-05-2017, 10:47 PM
RE: ArcTan(x,y)? - DrD - 04-06-2017, 10:27 AM
RE: ArcTan(x,y)? - StephenG1CMZ - 04-06-2017, 03:22 PM
RE: ArcTan(x,y)? - KeithB - 04-05-2017, 07:33 PM
RE: ArcTan(x,y)? - StephenG1CMZ - 04-05-2017, 07:53 PM
RE: ArcTan(x,y)? - KeithB - 04-05-2017, 08:10 PM
RE: ArcTan(x,y)? - StephenG1CMZ - 04-05-2017, 09:17 PM
RE: ArcTan(x,y)? - jte - 04-05-2017, 09:08 PM
RE: ArcTan(x,y)? - KeithB - 04-05-2017, 09:42 PM
RE: ArcTan(x,y)? - StephenG1CMZ - 04-05-2017, 10:38 PM
RE: ArcTan(x,y)? - KeithB - 04-05-2017, 10:41 PM
RE: ArcTan(x,y)? - StephenG1CMZ - 04-06-2017, 03:30 PM
RE: ArcTan(x,y)? - Han - 04-06-2017, 03:53 PM
RE: ArcTan(x,y)? - JMB - 04-09-2017, 09:50 AM
RE: ArcTan(x,y)? - StephenG1CMZ - 04-09-2017, 03:47 PM
RE: ArcTan(x,y)? - JMB - 04-09-2017, 08:00 PM
RE: ArcTan(x,y)? - KeithB - 04-06-2017, 02:38 PM
RE: ArcTan(x,y)? - StephenG1CMZ - 04-09-2017, 09:54 PM
|
User(s) browsing this thread: 4 Guest(s)