Post Reply 
Wronskian of a matrix
05-06-2017, 01:34 AM
Post: #5
RE: Wronskian of a matrix
(06-03-2015 02:36 PM)salvomic Wrote:  hi,
with this program one can calculate wronskian of a matrix.
The CAS program produce the determinant or the matrix of wronskian.

Thanks to Han to have reviewed the program for me!

Syntax:
wronskm([f1,f2,...,fn])
wronskf(fun)


Salvo

Code:

#cas
// Salvo and Han, 2015
wronskm(f):=
BEGIN
  local s,v,m;

  s:=SIZE(f);
  IF s==0 OR TYPE(f)<>6 THEN RETURN("wronskm([f1,f2,...,fn])"); END;
  IF TYPE(s) THEN RETURN("wronskm: expecting vector of functions"); END;
  v:=lname(f);
  IF SIZE(v)<>1 THEN RETURN("wronskm: expecting single-variable functions"); END; 
  v:=v(1);
  m:=makemat((r,c)->diff(f(c),v$(r-1)),s,s);
  return m;
END;

wronsk(f):=
BEGIN
  local m;
  m:=wronskm(f);
  IF TYPE(m)==2 THEN
    return m;
  ELSE
    return det(m);
  END;
END;
#end


Hi, thanks for the program, but I have a question.

How can I enter trigonometric values ​​in the "f" functions?

Wronskm ([sin (x), cos (x)])


thx
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Wronskian of a matrix - salvomic - 06-03-2015, 02:36 PM
RE: Wronskian of a matrix - JB1414 - 10-24-2016, 02:48 PM
RE: Wronskian of a matrix - salvomic - 10-24-2016, 03:01 PM
RE: Wronskian of a matrix - Fernando - 05-06-2017 01:34 AM
RE: Wronskian of a matrix - salvomic - 10-30-2017, 10:43 PM
RE: Wronskian of a matrix - Eddie W. Shore - 11-04-2017, 02:20 PM
RE: Wronskian of a matrix - salvomic - 11-04-2017, 03:29 PM



User(s) browsing this thread: 1 Guest(s)