The following warnings occurred:
Warning [2] count(): Parameter must be an array or an object that implements Countable - Line: 795 - File: showthread.php PHP 7.4.33 (FreeBSD)
File Line Function
/showthread.php 795 errorHandler->error





Post Reply 
(20S and 21S) Great Circle
06-03-2017, 08:42 PM
Post: #1
(20S and 21S) Great Circle
The following program calculates the distance between two places on Earth (or any other planet) given the coordinates latitude (λ, east is positive) and longitude (ϕ, north is positive).

Inputs:
R1: longitude 1, R2: latitude 1
R4: longitude 2, R5: latitude 2
Enter the coordinates in DD.MMSSSS.

R1, R4: ϕ1, ϕ2; R2, R5: λ1, λ2

Distance, in miles, is stored in R0. Degrees mode is set.

Formula:

distance = acos( sin ϕ1 * sin ϕ2 + cos ϕ1 * cos ϕ2 * cos (λ2 – λ1) )* 3958.75 * π/180

On the HP 20S and HP 21S, can multiply by π/180 by executing the >RAD function.

HP 20S and HP 21S Program: Great Circle
Code:

STEP    CODE    KEY
01    61, 41, A    LBL A
02    61, 23     DEG
03    22, 1    RCL 1
04    51, 54    >HR
05    21, 1    STO 1
06    23    SIN
07    55    *
08    22, 4    RCL 4
09    51, 54    >HR
10    21, 4    STO 4
11    23    SIN
12    75    +
13    22, 1    RCL 1
14    24    COS
15    55    *
16    22, 4    RCL 4
17    24    COS
18    55    *
19    33    (
20    22, 2    RCL 2
21    51, 54    >HR
22    21, 2    STO 2
23    65    -
24    22, 5    RCL 5
25    51, 54    >HR
26    21, 5    STO 5
27    34    )
28    24    COS
29    74    =
30    51, 24    ACOS
31    55    *
32    3    3
33    9    9
34    5    5
35    8    8
36    73    .
37    7    7
38    5    5
39    74    =
40    61, 55    >RAD
41    21, 0    STO 0
42    61, 26    RTN


Example 1:
Los Angeles to Rome:
Los Angeles (ϕ1 = 34°13’, λ1 = -118°15’)
Rome (ϕ2 = 41°15’, λ2 = 12°30’)
Result: 6322.2196 mi

Example 2:
Dublin to Las Vegas:
Dublin (ϕ1 = 53°20’52”, λ1 = -6°15’35”)
Las Vegas (ϕ2 = 36°10’30”, λ2 = -115°08’11”)
Result: 4938.7520 mi
Visit this user's website Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(20S and 21S) Great Circle - Eddie W. Shore - 06-03-2017 08:42 PM
RE: (20S and 21S) Great Circle - Marcel - 06-03-2017, 10:00 PM
RE: (20S and 21S) Great Circle - Dieter - 06-04-2017, 03:37 PM



User(s) browsing this thread: 3 Guest(s)