Riemann's Zeta Function - another approach (RPL)
|
06-17-2017, 06:07 PM
(This post was last modified: 06-19-2017 04:47 PM by Gerson W. Barbosa.)
Post: #2
|
|||
|
|||
RE: Riemann's Zeta Function - another approach (RPL)
\[\zeta (s)= \frac{2^{s}}{2^{s}-2}\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+1)^{s}}\]
\[\zeta (s)\approx \frac{2^{s}}{2^{s}-2}\left ( \frac{1}{2\cdot \left (n+\frac{1}{2}+\frac{s+1}{8\cdot n}-\frac{2\cdot s+1}{27\cdot n^{2}} \right )^{s}} + \sum_{k=1}^{n} \frac{(-1)^{k}}{(n-k+1)^{s}} \right )\] If I were to guess, I'd say the third term (n and 1/2 are too trivial to count) is (3*s + 1)/(64*n^3), but I haven't tried it yet. Here is a Q&D stack-only implementation: Code:
0.5 -> -1.46035450880 (6.17 s) 1.0001 -> 10000.5772771 (2.54 s) 1.27 -> 4.30022020082 (1.88 s) 1.5 -> 2.61237534865 (1.53 s) 2 -> 1.64493406684 (1.04 s) 3 -> 1.20205690315 (0.64 s) 4 -> 1.08232323371 (0.48 s) 5 -> 1.03692775514 (0.37 s) 6 -> 1.01734306199 (0.32 s) 7 -> 1.00834927738 (0.27 s) 12 -> 1.00024608656 (0.18 s) 19.99 -> 1.0000009606 (0.12 s) (2,3) -> (0.798021985140,-0.113744308037) (4.22 s) Edited to correct a sign in the second formula. Update: it looks like the denominator of the second term is 24, not 27. The previous term, (s+1)/(8*n) is correct. Now using \[\zeta (s)\approx \frac{2^{s}}{2^{s}-2}\left ( \frac{1}{2\cdot \left (n+\frac{1}{2}+\frac{s+1}{8\cdot n}-\frac{2\cdot s+1}{24\cdot n^{2}}+\frac{3\cdot s+1}{30\cdot n^{3}} \right )^{s}} + \sum_{k=1}^{n} \frac{(-1)^{k}}{(n-k+1)^{s}} \right )\] n should always be even. Not sure about the last two correction terms, though. I'd need to do some calculations using 30+ SD in order to determine them. Code:
0.5 -> -1.46035450880 (5.36) [378] 1.0001 -> 10000.5772772 (2.24) [156] 1.27 -> 4.30022020086 (1.70) [116] 1.5 -> 2.61237534869 (1.39) [94] 2 -> 1.64493406686 (0.98) [66] 3 -> 1.20205690316 (0.60) [38] 4 -> 1.08232323371 (0.44) [26] 5 -> 1.03692775514 (0.36) [20] 6 -> 1.01734306198 (0.31) [16] 7 -> 1.00834927738 (0.28) [14] 12 -> 1.00024608655 (0.17) [6] 19.99 -> 1.0000009606 (0.14) [4] (2,3) -> (0.798021985137,-0.113744308000) (3.90) [66] (t): time in seconds [n]: evaluated terms in the alternating series. |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 8 Guest(s)