SIN(X)^COS(X)
|
11-29-2017, 03:19 AM
Post: #7
|
|||
|
|||
RE: SIN(X)^COS(X)
I understand...there are an infinity of real solutions that are a subset of an infinity of non-real solutions (for (-1)^x). Not as intuitive (to me) for (sin x)^(cos x), especially with regard to the symmetric solutions with respect to the x axis for the non real "y" values for y=(sin x)^(cos x) l pi<x<2pi.
Again, thanks! |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
SIN(X)^COS(X) - lrdheat - 11-26-2017, 03:41 PM
RE: SIN(X)^COS(X) - John Colvin - 11-26-2017, 08:01 PM
RE: SIN(X)^COS(X) - lrdheat - 11-27-2017, 03:09 AM
RE: SIN(X)^COS(X) - AlexFekken - 11-27-2017, 06:19 AM
RE: SIN(X)^COS(X) - lrdheat - 11-27-2017, 03:55 PM
RE: SIN(X)^COS(X) - Fortin - 11-28-2017, 02:52 PM
RE: SIN(X)^COS(X) - lrdheat - 11-29-2017 03:19 AM
RE: SIN(X)^COS(X) - lrdheat - 11-29-2017, 02:37 PM
RE: SIN(X)^COS(X) - Fortin - 12-01-2017, 01:37 AM
RE: SIN(X)^COS(X) - lrdheat - 12-01-2017, 07:40 PM
RE: SIN(X)^COS(X) - chazzs - 12-04-2017, 10:17 PM
RE: SIN(X)^COS(X) - Fortin - 12-01-2017, 11:42 PM
RE: SIN(X)^COS(X) - lrdheat - 12-06-2017, 02:47 AM
|
User(s) browsing this thread: 1 Guest(s)