Thanks for all your answers. Sorry, thogh, for bringing up an "old" issue.
Anyway, I still feel that I'm a tad disappointed, that, in 2013 (time of the Prime purchase), we do not have more accuracy on the calcs.
I just tried my maxima program (
http://maxima.sourceforge.net/) to 1024 decimals with "bfloat" command, the same, though "only" 2 iterations. It still returned 2.0 as the answer. (PC win10Pro, Intel i5 CPU)
In my opinion, there should be no reason that we should not have, say, at least 256 digits/decimal points accuracy. That goes for any device capable of doing "2+2".
Below, the transcript from maxima:
Code:
(%i7) bfloat (sqrt(2));
(%o7) 1.4142135623730950488016887242096980785696718753769480731766797379907324\
784621070388503875343276415727350138462309122970249248360558507372126441214970\
999358314132226659275055927557999505011527820605714701095599716059702745345968\
620147285174186408891986095523292304843087143214508397626036279952514079896872\
533965463318088296406206152583523950547457502877599617298355752203375318570113\
543746034084988471603868999706990048150305440277903164542478230684929369186215\
805784631115966687130130156185689872372352885092648612494977154218334204285686\
060146824720771435854874155657069677653720226485447015858801620758474922657226\
002085584466521458398893944370926591800311388246468157082630100594858704003186\
480342194897278290641045072636881313739855256117322040245091227700226941127573\
627280495738108967504018369868368450725799364729060762996941380475654823728997\
180326802474420629269124859052181004459842150591120249441341728531478105803603\
371077309182869314710171111683916581726889419758716582152128229518488472089694\
63386289156288277b0
(%i8) bfloat (sqrt(%));
(%o8) 1.1892071150027210667174999705604759152929720924638174130190022247194666\
682269171598707813445381376737160373947747692131860637263617898477567853608625\
380177750701515114035570922731623428688899241754460719087105038499725591050098\
371044920154845735674580904839940930900034977959080384896588430050411987170093\
790798209846252353739812817408181137808285520148422100609589324124459310350575\
191963029413832634742802798244080228008217292720586153666393704002382073085456\
530674477148598887334576271867838116547045872761271112699886784349301758614249\
701700541314551438919987437667621785161783177987307048236318734734842180537156\
986842636482761056228477995862896332939281687874758656034737919964594007561544\
437157418903039869712943062486253517341291535975311215446746159086477606517445\
957055930979119465756398917686972170262497475333629918606531157083493680769804\
948170607437684746785586528255014184649792489099515633782998595087643532396621\
477896547910454186934661861396145218563917026341604354229856108549326870868151\
71745404554548532b0
(%i9) bfloat (%o8^2);
(%o9) 1.414213562373095048801688724209698078569671875376948073176679737990732\
478462107038850387534327641572735013846230912297024924836055850737212644121497\
099935831413222665927505592755799950501152782060571470109559971605970274534596\
862014728517418640889198609552329230484308714321450839762603627995251407989687\
253396546331808829640620615258352395054745750287759961729835575220337531857011\
354374603408498847160386899970699004815030544027790316454247823068492936918621\
580578463111596668713013015618568987237235288509264861249497715421833420428568\
606014682472077143585487415565706967765372022648544701585880162075847492265722\
600208558446652145839889394437092659180031138824646815708263010059485870400318\
648034219489727829064104507263688131373985525611732204024509122770022694112757\
362728049573810896750401836986836845072579936472906076299694138047565482372899\
718032680247442062926912485905218100445984215059112024944134172853147810580360\
337107730918286931471017111168391658172688941975871658215212822951848847208969\
463386289156288277b0
(%i10) bfloat (%^2);
(%o10) 2.0b0