(11C) Poisson distribution
|
12-19-2017, 08:15 PM
Post: #2
|
|||
|
|||
RE: (11C) Poisson distribution
(12-18-2017 09:38 AM)Gamo Wrote: What is the chance of gold of P(k) = 0, 1, 2, 3, 4, 5, 6, 7 Gold ?-) I assume this is supposed to mean "What is the probability P(k) for k = 0, 1, 2, 3, 4, 5, 6 or 7 goals". But why do you use two separate labels for k and P(k)? This way calculating the PDF always requires pressing two keys, B and C. Here is another version that also calculates the CDF, i.e. P(k1 ≤ k ≤ k2). Code: LBL A Example for λ = 2,5: Code: Enter λ Direct evaluation of the Poisson PDF often leads to overflow errors. Even cases where k>69 can not be handled this way. Too bad there is no lnΓ function available, this could provide an easy fix. But there are two workarounds: 1. The recursive method of the CDF routine significantly extends the useable range for λ and k, and this can also be used for calculating the PDF: Simply enter 0 [ENTER] k [C], and when the result is displayed press [R↓] or [x<>y] to get P(k). Example: Evaluate P(80) for λ=90. Code: 90 [A] 90,0000 However, the iteration with k required loops may take some time on a hardware 11C. Also please note that for λ > 227,9559242 the expression e–λ will underflow to zero. In this case 0 is returned. 2. For large λ and k the following code may be used. It implements a Stirling-based approximation, and since there is no iteration the result is returned immediately. Code: LBL E Example: Evaluate P(80) for λ=90. Code: 90 [A] 90,0000 Dieter |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(11C) Poisson distribution - Gamo - 12-18-2017, 09:38 AM
RE: (11C) Poisson distribution - Dieter - 12-19-2017 08:15 PM
RE: (11C) Poisson distribution - Gamo - 12-20-2017, 01:21 AM
RE: (11C) Poisson distribution - SlideRule - 12-23-2017, 06:42 PM
RE: (11C) Poisson distribution - Dieter - 12-24-2017, 12:27 PM
|
User(s) browsing this thread: 1 Guest(s)