Digamma Function
|
12-22-2017, 11:20 PM
Post: #1
|
|||
|
|||
Digamma Function
The program DIGAM ( ψ ) calculates the digamma function for any positive integers and multiples of 1/2 (such as 3/2, 5/2, 7/2,etc) using the formulas:
ψ(1/2) = -γ – ln 4 = -1.963510026 ψ(1) = -γ = -0.5772156649 ψ(n) = Σ(1/x, x, 1, n-1) - γ for n is an integer ψ(n) = Σ(2/(2*x+1), x, 0, n-3/2) - γ – ln 4 for n a multiple of 1/2 for the form p/2, p is odd where γ = 0.577215664901533 (Euler-Mascheroni constant) HP Prime Program DIGAM Code:
Examples DIGAM(2) = 0.422784335098 DIGAM(3) = 0.922784335098 DIGAM(4) = 1.25611766843 DIGAM(3/2) = 0.03648997398 DIGAM(5/2) = 0.70315664065 DIGAM(7/2) = 1.10315664065 Source: Keith Oldham, Jan Myland, & Jerome Spainer. An Atlas of Functions. 2nd Edition. Springer: New York. 2009 ISBN 13: 978-0-387-48806-6 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Digamma Function - Eddie W. Shore - 12-22-2017 11:20 PM
|
User(s) browsing this thread: 1 Guest(s)