(12C+) Bernoulli Number
09-12-2023, 05:59 PM
Post: #12
 Albert Chan Senior Member Posts: 2,710 Joined: Jul 2018
RE: (12C+) Bernoulli Number

Compare with forward difference table, Stirling numbers 2nd kind numbers are smaller

Euler zigzag numbers (A) smaller still.
B(m) = A(m-1) * (-1)^(m/2-1) * m / (2^m*(2^m-1))
B(6) = 16 * (-1)^2 * 6 / (2^6*(2^6-1)) = 1/42

see thread, (28 48 49 50) Bernoulli Numbers

BCMATH programs for some number theory functions

CalcBn V3.0 from The Bernoulli Number Page
This use zeta function correction, same as this thread, but *much* faster!
On my laptop, it get B(100,000) exact fraction in 12 second!
 « Next Oldest | Next Newest »

 Messages In This Thread (12C+) Bernoulli Number - Gamo - 07-27-2019, 06:41 AM RE: (12C+) Bernoulli Number - Albert Chan - 07-27-2019, 12:41 PM RE: (12C+) Bernoulli Number - Gamo - 07-27-2019, 01:40 PM RE: (12C+) Bernoulli Number - John Keith - 07-27-2019, 07:49 PM RE: (12C+) Bernoulli Number - Albert Chan - 07-28-2019, 12:02 AM RE: (12C+) Bernoulli Number - John Keith - 07-28-2019, 11:21 AM RE: (12C+) Bernoulli Number - Albert Chan - 08-30-2023, 09:46 PM RE: (12C+) Bernoulli Number - Albert Chan - 09-11-2023, 03:48 PM RE: (12C+) Bernoulli Number - Albert Chan - 07-28-2019, 01:08 AM RE: (12C+) Bernoulli Number - Gamo - 07-28-2019, 02:29 AM RE: (12C+) Bernoulli Number - Albert Chan - 07-31-2019, 05:14 PM RE: (12C+) Bernoulli Number - Albert Chan - 09-12-2023 05:59 PM

User(s) browsing this thread: 1 Guest(s)