Post Reply 
Wallis' product exploration
02-13-2020, 12:17 AM
Post: #20
RE: Wallis' product exploration
(02-12-2020 10:01 PM)pinkman Wrote:  
(02-11-2020 10:48 PM)Gerson W. Barbosa Wrote:  Only linear convergence, but better than waiting forever for a just few digits.

Thank you for all, this is beautiful.

Thank you and your cousin for having started that conversation about the Wallis Product and posting here, otherwise I probably wouldn’t have tried. Unlike approximation polynomials, the equivalent continued fractions usually follow beautiful patterns. Once you have a continued fraction, those polynomials are just their successive approximants. For instance,

Simplify [1 + 1/(4 n + 3/(2 - 1/(4 n + 5/2)))]

-> (64 n^2 + 72 n + 23)/(64 n^2 + 56 n + 15)

= (n^2 + 9n/8 + 23/64)/(n^2 + 7n/8 + 15/64)


This technique had worked previously for other slowly convergent series, so I guessed it would work for Wallis as well.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Wallis' product exploration - pinkman - 02-07-2020, 10:55 PM
RE: Wallis' product exploration - pinkman - 02-08-2020, 02:42 PM
RE: Wallis' product exploration - Allen - 02-08-2020, 07:13 PM
RE: Wallis' product exploration - Allen - 02-08-2020, 08:58 PM
RE: Wallis' product exploration - pinkman - 02-09-2020, 05:44 AM
RE: Wallis' product exploration - Allen - 02-08-2020, 08:13 PM
RE: Wallis' product exploration - Allen - 02-09-2020, 01:08 PM
RE: Wallis' product exploration - Allen - 02-09-2020, 01:57 PM
RE: Wallis' product exploration - Allen - 02-09-2020, 03:08 PM
RE: Wallis' product exploration - pinkman - 02-09-2020, 02:14 PM
RE: Wallis' product exploration - EdS2 - 02-10-2020, 10:35 AM
RE: Wallis' product exploration - pinkman - 02-11-2020, 10:02 AM
RE: Wallis' product exploration - pinkman - 02-12-2020, 10:01 PM
RE: Wallis' product exploration - Gerson W. Barbosa - 02-13-2020 12:17 AM



User(s) browsing this thread: 2 Guest(s)