Little math problem(s) November 2020
11-20-2020, 06:06 PM (This post was last modified: 11-20-2020 06:20 PM by pier4r.)
Post: #1
 pier4r Senior Member Posts: 2,248 Joined: Nov 2014
Little math problem(s) November 2020
Reading the library of babel (n1, n2) was a pleasure.
Thinking about it, I was interested to know what one could represent with all the possible permutations of a finite number of symbols in a finite amount of places.

I didn't investigate much on the part where one introduces a protocol external to the representation (that is, a protocol that is not represented within the permutations but it is used to give meaning to a combination of permutations); but without any of this one should not be able to represent infinite processes that are not periodical.

Now let's say we have a book containing 1 million characters (for simplicity, be it those visible on a standard PC US keyboard, not even ASCII). If we want to represent PI we should have at least one book explaining the procedure, then books having all the possible permutations of numbers up to 1 million slots, then indexes of indexes that tell us the order how to read those books one after another to construct PI.

Since PI is infinite and not periodical, if I am not mistaken we should run out of possible valid permutations that could help forming the indexes. In other words we run out of space to construct the tree or chain of indexes to construct PI. If we could have infinite indexes then we could construct PI even with finite permutations because it is how we are doing it currently. Indeed we use only 10 digits, only the order of those needs to have infinite space.

Aside from infinite processes, I thought that finite ones should be representable. But then thinking a bit more I am not sure.

Shrinking the example. Imagine we have 4 bytes, all the permutations of those 4 bytes. Thus we have 2^32 possibilities.
Now imagine we have a protocol (admittedly external to the representation) where we want to represent a large number (thus finite) combining the available permutations of the 4 bytes in a certain order.

To do this we add an external source of data (that we shouldn't add). A collection of 1000 (or 10k or 100k or an arbitrary large finite collection) addresses (could be hex form, decimal, binary or whatever other format) that tell us which of those 2^32 combinations to pick to construct the number, in order. Left to right.

The point being, with 1000 (or any other finite number N) addresses one could map binary numbers up to 2^32000 (accordingly, 2^(32*N) ) but not all of them.

Thus, if I am not mistaken, even with the limits of the library of babel. Having all the permutations of 1 million characters (or more), one can catch a lot of content (indeed even this very comment), but not necessarily all that is possible. Though it is really interesting to see that a vast quantity of things that can be discovered (or "invented" ) is already there. Only it costs less to rediscover them from scracth rather than going through the library itself.

Am I missing something? What is your take on it?

n2: https://en.wikipedia.org/wiki/The_Library_of_Babel
n3: Almost this very comment https://libraryofbabel.info/browse.cgi book -> Volume 2 , page 67 , on Shelf 4 of Wall 2 of Hexagon:
Code:
 1vc1kaviswpm2xjiltx3m06uzj6wsekm53ebui6kq16gjyguprvhe41rmcepp7n527m1juqmxsbzfu2o​zq4fh1qz9i7qkc59ly4x8evknwiqjumzmyevzqodhcril65fb8231ywf0alrtjdsi0b0x7beti3asiw5​nuxf4t0aknprmzo6ofdvaeq39rvfftlrzw0chnsp6ge7hnxywrgwf31ur2wuiz2wfvl4buc4hg18abd8​xezntolzlw41z6wn1wcyj9bh4ed4ppvirqo4rge49r4pktogser0rnbiegwcxl47tgusspu2ehoszas0​h16cqafg5emhmvhdmo4uvs2do3llw4p1e0k1ztn4lmlj6g69g67ufdyzoy5e8kfrl7allixcar6w6w5b​9fu5sn6xjvegcaevxnvnhsyxsvu4so4assv5u9n1jr3ygdu35yxnc5k0nemhe0yz2w4kk34br3rqw7b4​4p5frggx7v07eiwoxvepd4objjc7sjh2br1togamk780ineu8q8jogqsnaukgppe41zzsafowgsfl3zw​26p6g8e1tqw7d2tpb409xxasrbewrdnld0sxewegamkqh2nutt3uqo4hes2n6vgkijsy0vxotuqsr5i4​8b5tcxtpip6ei2qw1f1o25k3fncd9q0b4xohhutg35gzdwzx6rdk7o84w109i7xnvq4ywmc19zb2qkje​rmxpb2dts7q7tks6sbypzx7y8ls7o3yeshyimoxn1mzxnh39wd8vbaeleqjsxox1pvlp5fv991nd4tro​lud62ptpuziwvwho7epieo0m2i9cv2ruz40jsfi9zc5wsybzquk203vzxl4t00abnzkz9r2okus77x23​6z3n75nxzywjgj6wagrje5rmvcughwzomjqupjjhdb3ja4sruwhiao8jewkvfwax7zl72g5q35arp288​a82w3q1ok9dg0g6qujya9hf4lmx7pdymui1wq814w3wwacdtqbxq1z4pz0uzx4jvhbqgrors7dev63qo​ayqcbkwpalwuf9mqwqw53n3mcx0pymlz0j9xuwb3ke69xn75lq9dm8lt7okt4mk4xhnjk8adkhe4o5fp​hxg3hjhqzj6ewlysiujmb3m333q7vg5kxbgfewimm1uslsg2v1swuldkifwn5yfka6tgy1j2mwfw76ll​1mzz3f0eyqs24jqdl8bf1lllk3irgrj6tfw9f7g55yu4ssec5poetopz978kpecof1kx90f10gulwa8y​hpyo4uebz9kfwocieocap0i6sl0e7eri1974zwzp5h72n101c9op5x052az0a8dw7huk5x7qc9ulsy27​2qg2jjgmiro9ig40f561rzsuzlpnn16mn3pef7eqjucv3kedqlmoex0h60zcyl5wl37rz8nrv8exsx1r​ojd0ej5fy8qinxq2d7ryb47mwc2van704xno0o97evysuxhvzez4epj4c013rro5ntmiavbkntc7l4ng​t4d7f9t7n1kb9brrgkqj2ynrr6l5984frod7lcdoqlocu3rzqwe1rvvruykvb2cluz7hdi19evmp9gw9​mx9pn3sauen3dv0f2m9bfwcqz6rbxkazufkhsbzep4ojflj08cx5jkdbj8soyzjzcgzd8e7brobvpd5q​cz4xl8kdue6o3ep7gdb1ivv98relcc5ubdpbzl3a4dmlrl46av3wyq4g9ooxhq7k8fn05y3bed6k2ovi​3g3d4z6vn7lsnmvpajlqcq1uil2s1e40wvtuv76wyf41i1riyh1jb623ks4flif38w5ok0ieiwko5qp8​jz3dssdff0pq93pe387a5h9xhivrbnr6kjsgzqquq9vwdsbq26mkukp4oo5plr6wbpfpq98hz6jvygxn​xxi3iu0q04zajrd2x5n4zy7ko1wvawb2gbhoqx0bsi9pg7mini5u6x4spq89b4849ihi4zjxisqvb41b​qmtcc0qsp7f0fxgglkwvbkjrmy07ax0fp8w0w76da1nsfm79pedo0st1o5m2itykkpswwmfgj34mlkhw​5523ah7c9s49p2tot18jv395fu9kpbhropml5ti8nco060lajmwcxp3idvfzp74l9bj8y7fdr45yf8hn​4e9s8awe326gu3qa1xdglektpuxitp4jgplc1gj5qj1fo98th0kdkzpyt5xludcbmkckss34l1nqvet3​nxbek2enrkaw8avsolyrn07zje052bj1fskkvabdg0tvtlzexo19sjhfhanoqkgryt75mud6i7giatgv​vjlxov6i9w4kzjjbjfedua1t1ehm4dnaixiwwm3g1kdv8q51ezmn2vsma261re23qs3r5ydf1k13tui6​qpq81wwa64r9sp5uawl7vw9yxopq8al2ikq9k16hitle6t074ql72strkf2c61tsovhns5njarsgxudm​ad52ol2j00213hjn10ffz21rb0h9dhblq1j01t2za4na8l0uwvp21l11sv7n2jjkexz5xrjalxqys8je​3n9v3hjf3ds8ovkbqya8ofxq8h3zcmrvy2bsvkqlmurf3v2u1iphqwubsd3dl90eifr9psbpat6ypudw​45kaxxq3cym81oj9ybx39jxjr2ova4pjnqaj3k1lbj2qcfllyz0n9trl8bkwrpsft29mq01blq79aofx​dxrvruzk7s8ls1sj1q9f4st2r2og7qrc5p470mrhrihniubundru2pwtvcprx3bgkgscll7f4dsujqcj​qfgs3h7gdfe8w0n9g2s15fzhwo022zp8vx3nlthswehipthnl8ok6qwmpqpxteyulkv9qc9o0ynn3zid​rvm65ifxt31knb14vujxmz58ee24gylp8ft8ihb8z7xre9swyhehopap81h3cef60t8gdq3khghk0au7​dmoeywa96s6r9uet808bysidbuv4auc7x56ba7eof58l8nq7n3gcphkpadqpzvwuzki2y4cszz5o64mo​5b9dchhoieuskxtqxbnszwuw6ycelqacieywgresdvf4nxegj2yborzinmyco960ukxolwxxynt3ck96​8se1u7dvirw1wq26vwof0yyfgt5m0hw16i4a08saj72i53kjhztr104w7cn4ti0esvspvpnw1goidmzs​imxbtq3mtm2h4u8rj0v47mjzs7mfve712j34cfvym4xgrl5swdgnac # I know that this is generated on the fly. But had the library been there, like in a platonic world, it had contained that information ab aeterno

Wikis are great, Contribute :)
 « Next Oldest | Next Newest »

 Messages In This Thread Little math problem(s) November 2020 - pier4r - 11-20-2020 06:06 PM RE: Little math problem(s) November 2020 - ttw - 11-20-2020, 08:37 PM RE: Little math problem(s) November 2020 - EdS2 - 11-21-2020, 09:59 AM RE: Little math problem(s) November 2020 - pier4r - 11-22-2020, 08:26 PM RE: Little math problem(s) November 2020 - Paul Dale - 11-21-2020, 10:10 AM RE: Little math problem(s) November 2020 - grsbanks - 11-21-2020, 10:45 AM RE: Little math problem(s) November 2020 - Albert Chan - 11-23-2020, 01:32 PM RE: Little math problem(s) November 2020 - BillBee - 11-23-2020, 12:41 PM

User(s) browsing this thread: 1 Guest(s)