Estimate logarithm quickly
|
10-18-2021, 01:02 PM
(This post was last modified: 07-28-2022 04:32 PM by Albert Chan.)
Post: #9
|
|||
|
|||
RE: Estimate logarithm quickly
(10-06-2021 10:58 PM)Albert Chan Wrote:(10-06-2021 05:12 PM)Eric Rechlin Wrote: Computing Logarithms by Integration - Richard Schwartz (17:02) Both methods actually are one and the same. Doerfler's Borchardt's algorithm + Richardson extrapolation: d(k,k) ≈ ∫(n^t,t,0,1) = (n-1)/ln(n) CAS> d00 := a0 := (1+n)/2 CAS> g0 := sqrt(n) CAS> d01 := factor(a1 := (a0+g0)/2) → (n + 2*n^(1/2) + 1)/4 CAS> d11 := factor(d01 + (d01-d00)/3) → (n + 4*n^(1/2) + 1)/6 CAS> g1 := sqrt(a1*g0) → (sqrt(sqrt(n)*(n+1)+2*n))/2 This seemingly looking "AGM" is really to evaluate doubled points. (*) We can rewrite g1 = (√√n) * (1+√n)/2, expanded: CAS> g1 := (n^(1/4) + n^(3/4))/2 CAS> d02 := factor(a2 := (a1+g1)/2) → (n + 2*n^(3/4) + 2*n^(1/2) + 2*n^(1/4) + 1)/8 CAS> d12 := factor(d02 + (d02-d01)/3) → (n + 4*n^(3/4) + 2*n^(1/2) + 4*n^(1/4) + 1)/12 CAS> d22 := factor(d12 + (d12-d11)/15) → (7*n + 32*n^(3/4) + 12*n^(1/2) + 32*n^(1/4) + 7)/90 Or, we dot multiply [a0,a1,a2] by weight, directly for Boole's Rule CAS> simplify( [a0, a1, a2](n=q^4) * [1,-20,64]/45 ) \( \Large \frac {(7\cdot q^{4}+32\cdot q^{3}+12\cdot q^{2}+32\cdot q+7)} {90} \) (*) We can "see" doubling of points by thinking weights as a "number" weight of a3 = 122222221 = 11111111*11 weight of g2 = 1010101 = 11111111/11 weight of g3 = √(a3*g2) = 11111111 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)