Post Reply 
(DM42) Matrix exponential
08-27-2023, 04:46 PM
Post: #31
RE: (DM42) Matrix exponential
(08-26-2023 10:20 PM)Albert Chan Wrote:  If n×n elements sized about the same, say k, FNORM(X) ≈ k*n
Code:
< 40 P=MAX(0,IROUND(LOG2(MAXAB(X)))+10) @ MAT X=(1/2^P)*X

> 40 P=MAX(0,IROUND(LOG2(FNORM(X)))+9) @ MAT X=(1/2^P)*X

I like this, especially since the HP-28/48 don't have MAXAB but do have ABS (same as FNORM ).
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: (DM42) Matrix exponential - Gil - 08-11-2023, 11:46 PM
RE: (DM42) Matrix exponential - Gil - 08-12-2023, 10:01 AM
RE: (DM42) Matrix exponential - Gil - 08-12-2023, 08:26 PM
RE: (DM42) Matrix exponential - Gil - 08-12-2023, 08:55 PM
RE: (DM42) Matrix exponential - Gil - 08-13-2023, 10:51 AM
RE: (DM42) Matrix exponential - Gil - 08-13-2023, 09:46 PM
RE: (DM42) Matrix exponential - Gil - 08-15-2023, 11:42 PM
RE: (DM42) Matrix exponential - John Keith - 08-16-2023, 12:01 PM
RE: (DM42) Matrix exponential - Gil - 08-16-2023, 12:45 PM
RE: (DM42) Matrix exponential - Werner - 08-23-2023, 07:16 AM
RE: (DM42) Matrix exponential - John Keith - 08-27-2023 04:46 PM
RE: (DM42) Matrix exponential - Gil - 08-23-2023, 09:09 AM
RE: (DM42) Matrix exponential - Werner - 08-24-2023, 01:14 PM
RE: (DM42) Matrix exponential - Gil - 08-28-2023, 08:57 AM



User(s) browsing this thread: 1 Guest(s)