Small challenge
|
06-11-2017, 10:59 AM
Post: #16
|
|||
|
|||
RE: Small challenge
(06-09-2017 01:14 PM)Vtile Wrote: I'll throw in another small and easy challenge ( especially since I give a picture. From these equations (\(\beta\) in radian): \(R_2 · \beta=2 · r · \pi\), and \((R_2+s) · \beta=2 · R · \pi\) we get: \(R_2=\frac{\frac{h_x}{cos \alpha}}{\frac{R}{R-h_x}-1}\), and \(\beta=\frac{2 · (R-h_x) · \pi}{R_2}\) All the other simplification is your task ![]() Csaba |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Small challenge - Pekis - 06-06-2017, 08:05 AM
RE: Small challenge - pier4r - 06-06-2017, 01:26 PM
RE: Small challenge - Pekis - 06-07-2017, 09:53 AM
RE: Small challenge - PedroLeiva - 06-07-2017, 11:35 AM
RE: Small challenge - Pekis - 06-07-2017, 03:49 PM
RE: Small challenge - PedroLeiva - 06-08-2017, 12:59 PM
RE: Small challenge - Jim Horn - 06-07-2017, 04:25 PM
RE: Small challenge - Pekis - 06-07-2017, 04:31 PM
RE: Small challenge - SlideRule - 06-07-2017, 08:42 PM
RE: Small challenge - Pekis - 06-07-2017, 09:54 PM
RE: Small challenge - SlideRule - 06-07-2017, 10:53 PM
RE: Small challenge - Pekis - 06-08-2017, 05:10 AM
RE: Small challenge - SlideRule - 06-08-2017, 12:12 PM
RE: Small challenge - Vtile - 06-09-2017, 01:14 PM
RE: Small challenge - Csaba Tizedes - 06-11-2017 10:59 AM
RE: Small challenge - Pekis - 06-09-2017, 07:08 AM
RE: Small challenge - Pekis - 06-11-2017, 09:58 PM
|
User(s) browsing this thread: 1 Guest(s)