SIN(X)^COS(X)
11-27-2017, 06:19 AM
Post: #4
 AlexFekken Member Posts: 151 Joined: May 2016
RE: SIN(X)^COS(X)
When sin(x) < 0 we have:

sin(x)^cos(x) =
exp(cos(x)*ln(sin(x)) =
exp(cos(x)*(i*pi + ln|sin(x)|)) =
exp(i*pi*cos(x)) * |sin(x)|^cos(x)

And the real part of exp(i*pi*cos(x)) is cos(pi*cos(x))

Does that explain what you see?
 « Next Oldest | Next Newest »

 Messages In This Thread SIN(X)^COS(X) - lrdheat - 11-26-2017, 03:41 PM RE: SIN(X)^COS(X) - John Colvin - 11-26-2017, 08:01 PM RE: SIN(X)^COS(X) - lrdheat - 11-27-2017, 03:09 AM RE: SIN(X)^COS(X) - AlexFekken - 11-27-2017 06:19 AM RE: SIN(X)^COS(X) - lrdheat - 11-27-2017, 03:55 PM RE: SIN(X)^COS(X) - Fortin - 11-28-2017, 02:52 PM RE: SIN(X)^COS(X) - lrdheat - 11-29-2017, 03:19 AM RE: SIN(X)^COS(X) - lrdheat - 11-29-2017, 02:37 PM RE: SIN(X)^COS(X) - Fortin - 12-01-2017, 01:37 AM RE: SIN(X)^COS(X) - lrdheat - 12-01-2017, 07:40 PM RE: SIN(X)^COS(X) - chazzs - 12-04-2017, 10:17 PM RE: SIN(X)^COS(X) - Fortin - 12-01-2017, 11:42 PM RE: SIN(X)^COS(X) - lrdheat - 12-06-2017, 02:47 AM

User(s) browsing this thread: 1 Guest(s)