Post Reply 
(35S) Quick integration
11-19-2022, 05:19 AM
Post: #24
RE: (35S) Quick integration
(11-19-2022 01:42 AM)Liamtoh Resu Wrote:  Can someone walk me through the symbolic calculation of the function?

I used the substitution:

\(
\begin{align}
2x &= \sinh(u) \\
4x^2 &= \sinh^2(u) \\
1 + 4x^2 &= 1 + \sinh^2(u) \\
&= \cosh^2(u) \\
\sqrt{1 + 4x^2} &= \cosh(u) \\
\end{align}
\)

After applying \(\frac{d}{du}\) on both sides of the substitution we get:

\(
\begin{align}
2\frac{dx}{du} &= \cosh(u) \\
\end{align}
\)

From this:

\(
\begin{align}
dx &= \tfrac{1}{2}\cosh(u) \, du \\
\end{align}
\)

Replace the substitution in the original integral:

\(
\begin{align}
\int \sqrt{1 + 4 x^2} \, dx
&= \tfrac{1}{2} \int \cosh^2(u) \, du \\
&= \tfrac{1}{4} \int 1 + \cosh(2u) \, du \\
&= \tfrac{1}{4} \left( u + \tfrac{1}{2} \sinh(2u) \right) +c \\
&= \tfrac{1}{8} \left( 2u + \sinh(2u) \right) +c \\
\end{align}
\)

Here we used the double angle formula:

\(
\begin{align}
\cosh(2u) = 2\cosh^2(u) - 1
\end{align}
\)

Now we can substitute the lower and upper limits:

\(
\begin{align}
x = 0 \Rightarrow 2x = 0 &= \sinh(u) \rightarrow u = 0 \\
x = 1 \Rightarrow 2x = 2 &= \sinh(u) \rightarrow u = \sinh^{-1}(2) \\
\end{align}
\)

Plugging them into the antiderivative leads to:

\(
\begin{align}
\int_0^1 \sqrt{1 + 4 x^2} \, dx
&= \frac{2 \sqrt{5} + \sinh^{-1}(2)}{4} \\
\end{align}
\)

Here again we used another double angle formula:

\(
\begin{align}
\sinh(2u)
&= 2\sinh(u)\cosh(u) \\
&= 2 \cdot 2x \cdot \sqrt{1 + 4x^2}
\end{align}
\)



However e.g. WolframAlpha comes up with a different substitution:

\(
\begin{align}
x &= \frac{\tan(u)}{2} \\
\end{align}
\)

But I'm too lazy to write that down here.
Maybe you want to give it a try?

References
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(35S) Quick integration - Roberto Volpi - 11-12-2022, 02:50 PM
RE: (35S) Quick integration - PedroLeiva - 11-12-2022, 03:29 PM
RE: (35S) Quick integration - PedroLeiva - 11-12-2022, 03:57 PM
RE: (35S) Quick integration - Albert Chan - 11-12-2022, 05:13 PM
RE: (35S) Quick integration - Thomas Klemm - 11-12-2022, 05:16 PM
RE: (35S) Quick integration - J-F Garnier - 11-14-2022, 02:50 PM
RE: (35S) Quick integration - rawi - 11-13-2022, 05:27 AM
RE: (35S) Quick integration - rawi - 11-13-2022, 12:49 PM
RE: (35S) Quick integration - Thomas Klemm - 11-14-2022, 07:39 AM
RE: (35S) Quick integration - Thomas Klemm - 11-14-2022, 01:54 PM
RE: (35S) Quick integration - Albert Chan - 11-14-2022, 02:45 PM
RE: (35S) Quick integration - Thomas Klemm - 11-15-2022, 09:49 AM
RE: (35S) Quick integration - Thomas Klemm - 11-18-2022, 04:59 PM
RE: (35S) Quick integration - Liamtoh Resu - 11-19-2022, 01:42 AM
RE: (35S) Quick integration - Albert Chan - 11-19-2022, 04:58 AM
RE: (35S) Quick integration - Thomas Klemm - 11-19-2022 05:19 AM
RE: (35S) Quick integration - Thomas Klemm - 11-19-2022, 05:36 AM
RE: (35S) Quick integration - Liamtoh Resu - 11-19-2022, 04:45 PM
RE: (35S) Quick integration - Albert Chan - 11-28-2022, 06:49 PM
RE: (35S) Quick integration - Albert Chan - 12-22-2022, 01:54 PM



User(s) browsing this thread: 2 Guest(s)