(DM 42) Bernoulli and tangent numbers
|
03-20-2023, 08:06 PM
(This post was last modified: 03-21-2023 10:58 AM by Gjermund Skailand.)
Post: #1
|
|||
|
|||
(DM 42) Bernoulli and tangent numbers
B2n, Tn: Fast calculation of Bernoulli numbers based on Tangent numbers
Input: n output: result in register 0 to n, even Bernoulli numbers b2n note b1= +/-0.5, all other odd numbers=0. For b1 the latest definition is +0.5 can also provide Tangent numbers depending on flag 00 flag 00 cancelled: Calculate even Bernoulli numbers B2n flag 00 set : calculate tangent numbers Tn flag is reset after each run runs in standard 4 stack mode, uses registers 0-n and flag 00 Calculates Bn60 (n=0..30) in less than a second on batteries. On USB power, calculates up to n=999, i.e. the 0-1998th Bernoulli numbers in about 5min 40 seconds. Ref "Fast computation of Bernoulli, Tangent and Secant Numbers. " Richard P. Brent and David Harvey 6 Algorithms based three-term recurrences arXiv:1108.0286v3 [math.CO] 5 Sep 2011 The algorithm is stable, and should return Bernoulli numbers accurate to 31-32 digits 2022-03-20 DM-42 version Gjermund Skailand 00 { 126-Byte Prgm } 01▸LBL "Tn" 02 SF 00 03▸LBL "B2n" 04 1ᴇ3 05 ÷ 06 2 07 + 08 ENTER 09 ENTER 10 1 11 STO 01 12 1 13▸LBL 00 14 × 15 STO IND ST Y 16 RCL ST Y 17 IP 18 ISG ST Z 19 GTO 00 20 R^ 21▸LBL 01 22 ENTER 23 ENTER 24 ENTER 25 1 26 - 27 R↓ 28 RCL IND ST T 29▸LBL 02 30 RCL ST Y 31 RCL- ST T 32 × 33 2 34 RCL+ ST L 35 RCL× IND ST Z 36 + 37 STO IND ST Y 38 ISG ST Y 39 GTO 02 40 R↓ 41 R↓ 42 ISG ST X 43 GTO 01 44 FP 45 1 46 STO 00 47 + 48 FS?C 00 49 RTN 50▸LBL 03 51 ENTER 52 IP 53 RCL× IND ST X 54 2 55 LASTX 56 STO+ ST X 57 DSE ST X 58 Y^X 59 ÷ 60 LASTX 61 STO+ ST X 62 1 63 - 64 ÷ 65 FS? 00 66 +/- 67 FC?C 00 68 SF 00 69 STO IND ST Y 70 R↓ 71 ISG ST X 72 GTO 03 73 CF 00 74 END |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(DM 42) Bernoulli and tangent numbers - Gjermund Skailand - 03-20-2023 08:06 PM
RE: (DM 42) Bernoulli and tangent numbers - Werner - 03-22-2023, 08:46 AM
RE: (DM 42) Bernoulli and tangent numbers - Gjermund Skailand - 03-22-2023, 11:45 AM
|
User(s) browsing this thread: 1 Guest(s)