HP35s and numerical differentiation
10-05-2014, 11:47 AM
Post: #2
 Dieter Senior Member Posts: 2,397 Joined: Dec 2013
RE: HP35s and numerical differentiation
(10-05-2014 10:58 AM)mcjtom Wrote:  What would be the simplest way of estimating a slope of tangent to function/expression (say, already stored in equation library) for a specified variable at a specified point?

There are several ways of evaluating the derivative of a function, a quite elegant one is shown below.

Quote:I imagine I could write a programme that would use, say, two-point secant formula (or some higher precision formulas), but how would I parse a function from an equation library to it? Is there a simpler way?

There is no way to access the equation list from within a user program. Sorry.

However, if the original function is defined in user code, another program may determine the derivative. A quite elegant way uses the 35s' complex mode. This has been discussed earlier in the old forum. A discussion with a working example in a 35s program can be found in this thread. Label F defines the function, label D calculates the derivative.

When entering the function F, be sure to use only commands the 35s can handle in complex mode, e.g. use x^ 0.5 instead of sqrt(x).

Dieter
 « Next Oldest | Next Newest »

 Messages In This Thread HP35s and numerical differentiation - mcjtom - 10-05-2014, 10:58 AM RE: HP35s and numerical differentiation - Dieter - 10-05-2014 11:47 AM RE: HP35s and numerical differentiation - Eddie W. Shore - 10-05-2014, 04:43 PM RE: HP35s and numerical differentiation - Thomas Klemm - 10-05-2014, 09:39 PM

User(s) browsing this thread: 1 Guest(s)