(11C) Prismoidal Solver
|
05-25-2019, 12:30 AM
(This post was last modified: 05-25-2019 03:07 AM by Gamo.)
Post: #1
|
|||
|
|||
(11C) Prismoidal Solver
Prismoidal formula is used in the calculation of earthwork quantities.
The "Volume" of any prismoid is equal to one-sixth its length multiplied by the sum of the two end-areas plus four times the mid-area. Formula Used: V = [ h(m1 + 4m2 + m3) ] ÷ 6 Where: m1 (Base Area) m2 (Middle Section Area) m3 (Top Area) h (Height) ---------------------------------- Procedure: User Mode [A] Rectangular Prism Height [ENTER] Length [ENTER] Width [A] [B] Cylinder Height [ENTER] Radius [B] [C] Pyramid Height [ENTER] Length [ENTER] Width [C] [D] Sphere Height [D] [E] Custom Volume Height [ENTER] Middle Area [ENTER] Top Area [ENTER] Base Area [E] ------------------------------------------------ Program: Code:
---------------------------- Example: FIX 1 Volume of Pyramid: h = 10 w = 8 l = 6 10 [ENTER] 8 [ENTER] 6 [C] display 160 ---------------------------- Volume of Sphere: r = 3 // Radius is 3 double this up become 6 (Height = 6) 6 [D] display 113.1 ---------------------------- Gamo |
|||
05-25-2019, 02:07 AM
(This post was last modified: 05-26-2019 10:49 PM by PedroLeiva.)
Post: #2
|
|||
|
|||
RE: (11C) Prismoidal Solver
Some more examples (FIX 3)
Rectangular prism h=6 l=12 w=4 solution---> 288,000 Cylinder h=24 r=12 solution---> 10.857,344 Volume of Pyramid a) rectangular base h=10 w=8 l=6 solution---> 160,000 b) cuadrangular base h=11,313708 w=8 l=8 solution---> 241,359 Volume of Sphere r=12 (so h=r*2= 24) solution---> 7.238,229 Custom volume (e.g. barrel) h= 0,9000 M= 0,2749 T= 0,1178 B= 0,1178 solution---> 0,200 Pedro |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)