(42S) Hyperbolic Triangles: Law of Sines and Cosines
|
07-26-2019, 02:00 PM
Post: #1
|
|||
|
|||
(42S) Hyperbolic Triangles: Law of Sines and Cosines
Blog Entry: http://edspi31415.blogspot.com/2019/07/d...ngles.html
There are three solvers: HYPSIN: Law of Sines - Hyperbolic Triangles sinh SA / sin ∠A = sinh SB / sin ∠B = sinh SC / sin ∠ C The solver uses sinh SA / sin ∠A = sinh SB / sin ∠B . Use the clever use of the labels is needed with the solver. HYPANG: Law of Cosines - Angle Dominant - Hyperbolic Triangles cos ∠A = - cos ∠B * cos ∠C + sin ∠B * sin ∠C * cosh SA HYPSDE: Law of Cosines - Side Dominant - Hyperbolic Triangles cosh SA = cosh SB * cosh SC - sinh SB * sinh SC * cos ∠A HP 42S/DM42/Free 42 Solver Programs HYPSIN: Law of Sines - Hyperbolic Triangles Code: 00 { 51-Byte Prgm } HYPANG: Law of Cosines - Angle Dominant - Hyperbolic Triangles Code: 00 { 63-Byte Prgm } HYPSDE: Law of Cosines - Side Dominant - Hyperbolic Triangles Code: 00 { 66-Byte Prgm } Examples Degrees mode is used Example 1 Step 1: Solve for Z, use HYPSDE: 23° -> ∠A 1.766 -> SB 1.8 -> SC Solve for SA: 1.0969 Step 2: Solve for X°, use HYPSIN: 1.8 -> SA 23° -> ∠A 1.766 -> SB Solve for ∠B: 22.1432° Step 3: Solve for Y°, use HYPSIN: 1.8 -> SA 23° -> ∠A 1.0969 -> SB Solve for ∠B: 10.1773° Example 2 Step 1: Solve for Z°, use HYPANG 40° -> ∠A 42° -> ∠B 1.365 -> SA Solve for ∠C: 57.0139° Step 2: Solve for X, use HYPSIN 40° -> ∠A 42° -> ∠B 1.365 -> SA Solve for SB: 1.4004 Step 3: Solve for Y, use HYPSIN 40° -> ∠A 57.10739° -> ∠B 1.365 -> SA Solve for SB: 1.6050 Sources: Martin, Angel "Hyperbolic Triangles for the HP-41" http://hp41programs.yolasite.com/hyperbolictriangle.php Retrieved May 15, 2019 Wikipedia "Hyperbolic Triangles" Last edited May 29, 2019. https://en.wikipedia.org/wiki/Hyperbolic_triangle Retrieved June 9, 2019 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)