Maximum Probability - Incomplete Gamma Law
|
07-27-2019, 01:32 PM
Post: #1
|
|||
|
|||
Maximum Probability - Incomplete Gamma Law
Blog Post: http://edspi31415.blogspot.com/2019/07/h...ximum.html
The program IGLMAX calculates four calculation points of the Incomplete Gamma Law: Three parameters of A, γ, and β of the IGL (Incomplete Gamma Law): g(x) = 1 / (β^γ * gamma(γ)) * x^(γ - 1) * e^(x/β) where: X = list of data points, where x_i ≥ 0 s = number of data points r = number of points where x_i = 0 (zero points) A = ln(mean(X)) - (Σ ln(X_i))/(s - r) γ = 1/(4*A) * (1 + √(1 + 4*A/3)) β = mean(X)/γ And p = probability that x is not exceeded p = r/s + (1 - r/s) * (1 - uigf(γ, x)/gamma(γ)) Gamma Function: gamma(γ) = ∫( t^(γ - 1) * e^(-t) dt, 0, ∞ ) Upper Incomplete Gamma Function: uigf(γ, x) = ∫( t^(γ - 1) * e^(-t) dt, x/β, ∞ ) One particular application is determining the maximum limit that rainfall exceeds x (inches or mm). The book "Pocket Computers in Agrometeorology" introduces this concept and provides a program for the classic TI-59 (see source below). HP Prime Program IGLMAX Code: EXPORT IGLMAX(L1,X) Example: Data from a city of the rainfall in 2017 and 2018 (in inches): 2017 January: 3.90 February: 2.84 March: 2.31 April: 0.98 May: 0.64 June: 0.05 July: 0.00 August: 0.01 September: 0.00 October: 0.33 November: 0.72 December: 1.08 2018 January: 2.49 February: 2.66 March: 3.06 April: 2.94 May: 2.33 June: 0.81 July: 0.05 August: 0.00 September: 0.00 October: 0.14 November: 0.50 December: 2.24 Parameters: A: 0.7237035089 γ (Gamma): 0.8296776362 β (Beta): 1.812752248 Probability that X inches of rainfall will not exceed: X = 1 in: 0.593857 X = 2 in: 0.781173 X = 3 in: 0.879613 Source: R.A. Gommes "Pocket Computers In Agrometeorology" Food and Agriculture Organization of the United Nations. FAO PLANT PRODUCTION AND PROTECTION PAPER. Rome, 1983. ISBN 92-5-101336-5 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)