(32SII) Curve Fitting
|
09-12-2019, 12:34 PM
Post: #1
|
|||
|
|||
(32SII) Curve Fitting
Introduction
The curve fitting program uses the linear regression module to determine the parameters b ("intercept") and m ("slope") in non-linear curves using following transformations: Logarithmic Regression: y = b + m * ln x Transformations: ( ln x, y, b, m ) Inverse Regression: y = b + m / x Transformations: ( 1/x, y, b, m ) Exponential Regression: y = b * e^(m * x) Transformation: ( x, ln y, e^b, m ) Power Regression: y = b * x^m Transformation: ( ln x, ln y, e^b, m ) Geometric (Exponent) Regression: y = b * m^x Transformation: ( x, ln y, e^b, e^m ) Simple Logistic Regression: y = 1 / (b + m * e^(-x)) Transformation: ( e^(-x), 1/y, b, m ) HP 32SII Program: Curve Fitting Note: 1. This can be adapted into the HP 35S under one label. Just take note of the where the label points are. 2. The total amount of bytes used is 90. 3. Flags 1 and 2 are used. If flag 1 is set, e^m is calculated as slope. If flag 2 is set, e^b is calculated as intercept. Program: Code: // Initialize - LBL X // Calculation - LBL Y Code: LBL Y // Logarithmic Regression - LBL L Code: LBL L // Inverse Regression - LBL I Code: LBL I // Exponential Regression - LBL E Code: LBL E // Power Regression - LBL P Code: LBL P // Geometric/Exponent Regression - LBL G Code: LBL G // Simple Logistic Regression - LBL S Code: LBL S Instructions: 1. Clear the statistics data and flags by pressing [XEQ] X. 2. Enter data points, run the proper label, and press [ Σ+ ] or [ Σ- ]. For example, for Logarithmic fit: y_data [ENTER] x_data [XEQ] L [ Σ+ ] Subsequent Data: y_data [ENTER] x_data [R/S] [ Σ+ ] This scheme allows for undoing data: y_data [ENTER] x_data [XEQ] L [ Σ- ] 3. Calculate intercept (B), slope (M), and correlation (R), press [XEQ] Y. Examples All results are rounded. Example 1: Logarithmic Regression Data (x,y): (33.8, 102.4) (34.6, 103.8) (36.1, 105.1) (37.8, 106.9) Results: B: -33.4580 M: 38.6498 R: 0.9941 y ≈ -33.4580 + 38.6498 ln x Example 2: Inverse Regression Data (x,y): (100, 425) (105, 429) (110, 444) (115, 480) B: 823.80396 M: -40664.72143 R: -0.91195 y ≈ 823.80396 - 40664.72143/x Example 3: Simple Logistic Regression Data (x,y): (1, 11) (1.3, 9.615) (1.6, 8.75) (1.9, 8.158) (2.6, 7.308) B: 0.14675 M: -0.15487 R: -0.99733 y ≈ 1 / (0.14675 - 0.15487*e^(-x)) Blog link: https://edspi31415.blogspot.com/2019/09/...tting.html |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)