FACTOR ANALYSIS
|
11-17-2019, 08:59 AM
(This post was last modified: 11-21-2019 09:39 PM by rawi.)
Post: #1
|
|||
|
|||
FACTOR ANALYSIS
Factor analysis is a multivariate statistical method to find hidden variables behind a set of variables.
The following program performs a factor analysis including estimation of communalities according to the iterative principal factor analysis and a varimax factor rotation. Literature: Tabachnick, Fidell: Using Multivariate Statistics, Boston 2001 Preparation: - Input of correlation matrix in matrix M5. - Make sure that the angle mode is set on "Rad" Application: - Start program - The list of eigenvalues of matrix R is shown. This gives you information to set the number of factors right in the following step. Press "OK" on the bottom line of the screen - You are asked for the number of factors you want to extract. Normally the number is the number of eigenvalues of R > 1. Put in number and press "OK" During computation you get some interim results: - Changes of the communalities in the iterative principal factor analysis - Otimization criterion of factor rotation - Some hints where to find results - Mean and minimum communality. Mean should be above .7, minimum above .5 - Finally the word "Ready" shows that the computation was completed. After that you will find the following results: - Matrix of unrotated factor loadings A: Matrix M6 - Matrix of rotated factor loadings Ar: Matrix M7 - Eigenvalues of correlation matrix R: List L4 - Eigenvalues of reduced correlation matrix Rh: List L5 - Communalities: List L6 - Reproduced correlation matrix AA': Matrix M8 - Rotation matrix: Matrix M9 Some hints how to get the data in the HP prime: I did not find a possibility to copy and paste data (like the correlation matrix in the appendix) directly in a matrix. Instead of typing it you can copy and paste it in the spreadsheet app and from there copy and paste it in a matrix. Enjoy! Raimund Wildner EXPORT FACANE() BEGIN // CORR.MAT: M5 LOCAL FZ0,VZ0,AK0,I1,I2,HIMEAN,HIMIN; LOCAL LHI,MEV,LE,LIX,F0,B0,C0,D0; LOCAL LDIM,I3,UI0,VI0; LOCAL ZZ0,ZN0,AL4,T4A,AD0,ZW0,AL0,AK1; LOCAL SJ1,SJ2,SI1,SI2; DIM(M5)▶LDIM; LDIM(1)▶VZ0;//VZ0: Number of variables MAKELIST(I1,I1,1,VZ0,1)▶LHI; MAKELIST(I1,I1,1,VZ0,1)▶LE; MAKEMAT(0,VZ0,VZ0)▶MEV; EIGENVAL(M5)▶LE; FOR I1 FROM 1 TO VZ0 DO RE(LE(I1))▶LE(I1); END; LE▶L5; SORT(L5)▶L5; REVERSE(L5)▶L5; L5▶L4; //L4: Eigenvalues of R EDITLIST(L4); INPUT(FZ0,"NUMBER OF FACTORS","FZ0=",2); MAKELIST(I1,I1,1,FZ0,1)▶LIX; REDIM(M6,{VZ0,FZ0}); //M6: MATRIX FAKTORL. REDIM(M7,{VZ0,FZ0}); //M7: MATRIX ROT FAKTORL. REDIM(M8,{VZ0,VZ0}); //M8: F. BER UND AA' REDIM(M9,{FZ0,FZ0}); //M9: ROTATIONMATRIX M5▶M8; // Start iterative estimation of communalities. REPEAT diag(M8)▶LHI; EIGENVAL(M8)▶LE; FOR I1 FROM 1 TO VZ0 DO RE(LE(I1))▶LE(I1); END; LE▶L5; SORT(L5)▶L5; REVERSE(L5)▶L5; eigVc(M8)▶MEV; //LIX: List of eigenvalues ordered to size FOR I1 FROM 1 TO FZ0 DO FOR I2 FROM 1 TO VZ0 DO IF L5(I1)=LE(I2) THEN I2▶LIX(I1); END; END; END; FOR I1 FROM 1 TO FZ0 DO //BER. MATR. A FOR I2 FROM 1 TO VZ0 DO MEV(I2,LIX(I1))*√(L5(I1))▶M6(I2,I1); END; END; //Norming of factor loadings FOR I1 FROM 1 TO FZ0 DO 0▶ZW0; FOR I2 FROM 1 TO VZ0 DO ZW0+M6(I2,I1)▶ZW0; END; IF ZW0<0 THEN FOR I2 FROM 1 TO VZ0 DO M6(I2,I1)*(−1)▶M6(I2,I1); END; END; END; 0▶AK0; // Comp. of termination croterion. FOR I1 FROM 1 TO VZ0 DO 0▶M8(I1,I1); FOR I2 FROM 1 TO FZ0 DO M8(I1,I1)+(M6(I1,I2))^2▶M8(I1,I1); END; IF M8(I1,I1)>1 THEN FOR I2 FROM 1 TO FZ0 DO M6(I1,I2)/√M8(I1,I1)▶M6(I1,I2); END; 1▶M8(I1,I1); END; AK0+ABS(LHI(I1)-M8(I1,I1))▶AK0; END; AK0/VZ0▶AK0; PRINT(AK0); UNTIL AK0<.0005; diag(M8)▶L6; //END of iterative est. of communalities //BEGIN of factor rotation ------------- REDIM(MEV,{VZ0,FZ0}); IF FZ0>1 THEN PRINT("Factor Rotation"); M6▶M7; FOR I1 FROM 1 TO VZ0 DO FOR I2 FROM 1 TO FZ0 DO M6(I1,I2)^2/L6(I1)▶MEV(I1,I2); END; END; ΣLIST(variance(MEV))/FZ0▶AK0; PRINT(AK0); REPEAT FOR I1 FROM 1 TO FZ0-1 DO FOR I2 FROM I1+1 TO FZ0 DO 0▶F0; 0▶B0; 0▶C0; 0▶D0; FOR I3 FROM 1 TO VZ0 DO (M7(I3,I1)^2-M7(I3,I2)^2)/L6(I3)▶UI0; 2.*M7(I3,I1)*M7(I3,I2)/L6(I3)▶VI0; F0+UI0▶F0; B0+VI0▶B0; C0+UI0^2-VI0^2▶C0; D0+2.*UI0*VI0▶D0; END; D0-2.*F0*B0/VZ0▶ZZ0; C0-(F0^2-B0^2)/VZ0▶ZN0; IF ZN0=0 THEN 100▶T4A; ELSE ZZ0/ZN0▶T4A; END; ATAN(T4A)▶AL4; 0▶AD0; IF ZZ0<0 THEN AD0+π▶AD0; END; IF T4A<0 THEN AD0+π▶AD0; END; (AL4+AD0)/4▶AL0; FOR I3 FROM 1 TO VZ0 DO M7(I3,I1)*COS(AL0)+M7(I3,I2)*SIN(AL0)▶ZW0; −M7(I3,I1)*SIN(AL0)+M7(I3,I2)*COS(AL0)▶M7(I3,I2); ZW0▶M7(I3,I1); END; END; END; FOR I1 FROM 1 TO VZ0 DO FOR I2 FROM 1 TO FZ0 DO M7(I1,I2)^2/L6(I1)▶MEV(I1,I2); END; END; ΣLIST(variance(MEV))/FZ0▶AK1; AK1-AK0▶ZW0; PRINT(AK1); AK1▶AK0; UNTIL ZW0<0.00001; (TRN(M6)*M6)^(−1)*TRN(M6)*M7▶M9; END; // Start fianl procedures // Ordering of factors to size IF FZ0 > 1 THEN FOR I1 FROM 1 TO FZ0 DO LHI(I1)=0; FOR I2 FROM 1 TO VZ0 DO LHI(I1)+M7(I2,I1)^2▶LHI(I1); END; END; REPEAT 0▶AK0; FOR I1 FROM 1 TO FZ0-1 DO FOR I2 FROM I1+1 TO FZ0 DO IF LHI(I1)<LHI(I2) THEN AK0+1▶AK0; FOR I3 FROM 1TO VZ0 DO M7(I3,I1)▶ZW0; M7(I3,I2)▶M7(I3,I1); ZW0▶M7(I3,I2); END; LHI(I1)▶ZW0; LHI(I2)▶LHI(I1); ZW0▶LHI(I2); END; END; END; UNTIL AK0=0; END; // Normation that sum of loadings >0 FOR I1 FROM 1 TO FZ0 DO 0▶SJ1; FOR I2 FROM 1 TO VZ0 DO SJ1+M7(I2,I1)▶SJ1; END; IF SJ1<0 THEN FOR I2 FROM 1 TO VZ0 DO M7(I2,I1)*(−1)▶M7(I2,I1); END; END; END; PRINT(" "); PRINT("Result: A unrot: M6, A rot: M7,"); PRINT(" AA':M8, Rotation matrix.: M9"); PRINT(" Eigenvalues R: L4, Ev Rh: L5, hi2: L6"); 0▶HIMEAN; 1▶HIMIN; FOR I1 FROM 1 TO VZ0 DO HIMEAN+L6(I1)▶HIMEAN; IF L6(I1)<HIMIN THEN L6(I1)▶HIMIN; END; END; M6*TRN(M6)▶M8; (TRN(M6)*M6)^(−1)*(TRN(M6)*M7)▶M9; HIMEAN/VZ0▶HIMEAN; PRINT("Mean(hi2)=" +HIMEAN); PRINT("Minimum(hi2)=" +HIMIN); PRINT("Ready"); END; |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)