hp prime symbolic arithmetic test
01-23-2020, 08:36 AM (This post was last modified: 01-23-2020 08:38 AM by yangyongkang.)
Post: #1
 yangyongkang Member Posts: 51 Joined: Dec 2018
hp prime symbolic arithmetic test
Regarding the problem of truncable primes, python-like code
Code:
#cas def SelectPrimeAppendNum(num,n):   return select(x->isprime(x),[seq(num+10^(n-1)*k,k=1..9)]) def TruncatedPrimeNumber(n):     if n==1:      return [2,3,5,7]      else:       return CONCAT(map(TruncatedPrimeNumber(n-1),x->SelectPrimeAppendNum(x,n)))   #end

Symbolic operation：
Code:
#cas def calc():   r:=1   c:=sqrt(3);   d:=sqrt(2);   p:=coeff(x^2/c^2+(k*(x-a)+b)^2/d^2-1,x);   sol:=[-p[1]/p[0]-a,k*(-p[1]/p[0]-2a)+b];   m:=normal([seq(subst(sol,k=[(a*b+r*sqrt(a^2+b^2-r^2))/(a^2-r^2),(a*b-r*sqrt(a^2+b^2-r^2))/(a^2-r^2)][n]),n=0..1)]);   q:=normal([seq(subst((x*y+(-1)^(k)*r*sqrt(x^2+y^2-r^2))/(x^2-r^2),[x=m[k,0],y=m[k,1]]),k=0..1)]);   z:=normal(zeros(seq(y-(q[k]*(x-m[k,0])+m[k,1]),k=0..1),[x,y])[0]);   if tlin(subst(z[0]^2/3267+z[1]^2/2738,[a=sqrt(3)*cos(t),b=sqrt(2)*sin(t)]))==1/2209:     return true   return false #end

Attached File(s) Thumbnail(s)

study hard, improve every day
 « Next Oldest | Next Newest »

User(s) browsing this thread: 1 Guest(s)