(41) Γ(x+1) [HP-41C]
|
04-29-2020, 09:45 PM
(This post was last modified: 03-20-2021 08:40 PM by Gene.)
Post: #1
|
|||
|
|||
(41) Γ(x+1) [HP-41C]
01 LBL "GXP1"
02 ENTER 03 ENTER 04 6 05 1/X 06 RCL Y 07 22 08 / 09 - 10 RCL Y 11 X^2 12 110 13 / 14 + 15 SQRT 16 E^X 17 X<>Y 18 ST+ Z 19 ST+ T 20 RDN 21 + 22 6 23 X<>Y 24 / 25 CHS 26 7 27 + 28 6 29 X<>Y 30 / 31 + 32 1/X 33 CHS 34 6 35 + 36 1/X 37 + 38 ST+ X 39 X<>Y 40 R^ 41 -1 42 E^X 43 * 44 X<>Y 45 Y^X 46 X<>Y 47 PI 48 * 49 SQRT 50 * 51 END Γ(x+1), x = 1..69 RUN 0,999998868 1,999999993 6,000000000 24,00000001 120,0000001 719,9999998 5.039,999998 40.320,00008 362.880,0005 3.628.800,004 39.916.800,02 479.001.600,0 6.227.020.813, 8,717829135+10 1,307674370+12 2,092278990+13 3,556874281+14 6,402373724+15 1,216451007+17 2,432902011+18 5,109094224+19 1,124000729+21 2,585201681+22 6,204484035+23 1,551121007+25 4,032914619+26 1,088886946+28 3,048883422+29 8,841761897+30 2,652528633+32 8,222838734+33 2,631308388+35 8,683317650+36 2,952327992+38 1,033314794+40 3,719933246+41 1,376375297+43 5,230226253+44 2,039788233+46 8,159152904+47 3,345252679+49 1,405006121+51 6,041526302+52 2,658271563+54 1,196222200+56 5,502622253+57 2,586232450+59 1,241391572+61 6,082818683+62 3,041409334+64 1,551118754+66 8,065817499+67 4,274883258+69 2,308436953+71 1,269640355+73 7,109985964+74 4,052691987+76 2,350561344+78 1,386831189+80 8,320987107+81 5,075802119+83 3,146997305+85 1,982608348+87 1,268869339+89 8,247650677+90 5,443449430+92 3,647111106+94 2,480035546+96 1,711224521+98 Γ(x+1)/x!, x = 1..69 RUN 9,999988683-01 9,999999965-01 1,000000000+00 1,000000000+00 1,000000001+00 9,999999997-01 9,999999996-01 1,000000002+00 1,000000001+00 1,000000001+00 1,000000001+00 1,000000000+00 1,000000002+00 1,000000002+00 1,000000002+00 1,000000000+00 1,000000000+00 1,000000003+00 1,000000002+00 1,000000001+00 1,000000001+00 1,000000001+00 1,000000003+00 1,000000003+00 1,000000002+00 1,000000002+00 1,000000001+00 9,999999921-01 9,999999890-01 1,000000013+00 1,000000010+00 1,000000007+00 1,000000004+00 1,000000001+00 9,999999971-01 9,999999941-01 9,999999913-01 1,000000015+00 1,000000012+00 1,000000009+00 1,000000005+00 1,000000002+00 9,999999993-01 9,999999955-01 9,999999925-01 1,000000017+00 1,000000014+00 1,000000010+00 1,000000007+00 1,000000005+00 1,000000001+00 9,999999978-01 9,999999939-01 9,999999913-01 1,000000016+00 1,000000012+00 1,000000009+00 1,000000006+00 1,000000003+00 9,999999993-01 9,999999961-01 9,999999933-01 1,000000017+00 1,000000013+00 1,000000010+00 1,000000007+00 1,000000004+00 1,000000002+00 9,999999982-01 |
|||
04-30-2020, 08:35 PM
(This post was last modified: 05-01-2020 06:01 PM by Gerson W. Barbosa.)
Post: #2
|
|||
|
|||
RE: Γ(x+1) [HP-41C]
As you may have noticed this Γ(x+1) implementation on the HP-41C is not finished yet. It’s accurate to about nine digits only for x equal or greater than 2. Also, it won’t work for negative arguments. These shortcomings can be easily addressed.
The test HP-75C program below does that by using the little trick in line 25 and by applying Euler’s reflection formula in line 50. Negative integer arguments should return a division by zero error, but because of numerical limitations this won’t occur. This can be fixed, but my primary goal is a compact algorithm using only integer constants, as they don’t take much memory space which are scarce on the HP-41C. I’m not sure that goal has been met as I haven’t included these changes in the RPN program yet. The lack of guard digits might cause some loss of precision on the HP-41C when compared to the HP-75C results. ————- 10 INPUT X 15 P=1 @ Q=0 20 IF X<0 THEN Q=1 @ W=X @ X=-X 25 IF X<3 THEN X=X+3 @ P=X*(X-1)*(X-2) 30 Y=2*X 35 C=EXP(SQR((3*X*(X-5)+55)/330)) 40 Z=X+(Y*(7*(C+Y))+6*C)/(Y*(42*(C+Y)-7)+29*C+6) 45 F=SQR(2*Z*PI)*(X/EXP(1))^X/P 50 IF Q THEN F=W*PI/(F*SIN(W*ACOS(-1))) 55 D=DISP F ————- -71.06 -> -1.08421623(305)E-99 -2.5 -> 2.36327180(084) [4/3×√π] -2.0 -> 7.55190541728E12 [+∞] -1.5 -> -3.54490780(301) [-2√π] -1.0 -> -1.51038108473E13 [-∞] -0.5-> 1.77245385(344) [√π] 0 -> .999999998537 [1] .5-> .88622692(4190) [√(π/4)] 1 -> .999999999158 [1] 2 -> 2.00000000000 3 -> 5.99999999122 [6] 4 -> 23.9999999798 [24] 5 -> 120.000000000 6 -> 720.000000(166) 7 -> 5040.00000(104) 8 -> 40320.00000(54) 9 -> 362880.0000(28) 10-> 3628800.000(14) 11-> 39916800.000(6) 12-> 479001600.0(14) 13-> 6227020800.(15) 14-> 8717829120(2.0) 15-> 1.3076743680(3)E12 20-> 2.432902008(30)E18 30-> 2.65252859(798)E32 50-> 3.041409320(56)E64 60-> 8.32098711(335)E81 69-> 1.711224524(19)E98 69.95 -> 9.68284767(215)E99 ————- Edited to fix a few typos in the results table |
|||
04-30-2020, 09:58 PM
Post: #3
|
|||
|
|||
RE: Γ(x+1) [HP-41C]
Happy to see you’re still prospecting around Pi and Gamma.
It works on Free42, the accuracy is about 1.E-4 for GX1(.5) Having a good accuracy (and support for R-/Z-) for Gamma would be of a great help, I should analyze the code and help find the optimisations. |
|||
05-01-2020, 05:59 PM
(This post was last modified: 05-01-2020 08:31 PM by Gerson W. Barbosa.)
Post: #4
|
|||
|
|||
RE: Γ(x+1) [HP-41C]
Slightly more accurate and smaller (201 bytes on the HP-71B). The HP-71B return a division by zero warning for negative arguments as expected.
————- 10 INPUT X 15 P=1 @ Q=0 20 IF X<0 Q=1 @ W=X @ X=-X 25 IF X<4 THEN X=X+4 @ P=X*(X-1)*(X-2)*(X-3) 30 Y=2*X 35 C=41/30-X/38+X*X/92 40 Z=X+(Y*(7*(C+Y))+6*C)/(Y*(42*(C+Y)-7)+29*C+6) 45 F=SQR(2*Z*PI)*(X/EXP(1))^X/P 50 IF Q THEN F=W*PI/(F*SIN(W*ACOS(-1))) 55 D=DISP F ————- -71.06 -> -1.084216232(57)E-99 -2.5 -> 2.36327180(095) [4/3×√π] -2.0 -> 9.99999999999E499 [+∞] -1.5 -> -3.54490770(077) [-2√π] -1.0 -> -9.99999999999E499 [-∞] -0.5-> 1.772453850(37) [√π] 0 -> .999999999412 [1] .5-> .886226925(723) [√(π/4)] 1 -> 1.0000000000(4) 2 -> 2.0000000000(4) 3 -> 6.000000000(42) 4 -> 23.9999999859 [24] 5 -> 120.0000000(48) 6 -> 720.000000(145) 7 -> 5040.000000(35) 8 -> 40320.000000(6) 9 -> 362879.999999 [362880] 10-> 3628799.99998 [3628800] 11-> 39916799.9995 [39916800] 12-> 479001600.00(7) 13-> 6227020800.0(6) 14-> 87178291200.(5) 15-> 1.30767436800E12 20-> 2.4329020081(9)E18 30-> 2.65252859(780)E32 50-> 3.041409320(39)E64 60-> 8.32098711(301)E81 69-> 1.711224524(14)E98 69.95 -> 9.68284767(189)E98 ————- P.S.: In order to make the program more faithful to the initial HP-41C version, the line 40 should be changed to 40 Z=X+1/(6-1/(Y+6/(7-6/(Y+C)))) This decreases the HP-71B byte count to 190 bytes and has no effect on the overall accuracy, except for very occasional differences of one or two units in the last significant digit: 3 -> 6.000000000(40) 7 -> 5040.000000(34) |
|||
05-01-2020, 08:46 PM
(This post was last modified: 05-01-2020 08:47 PM by Gerson W. Barbosa.)
Post: #5
|
|||
|
|||
RE: Γ(x+1) [HP-41C]
(04-30-2020 09:58 PM)pinkman Wrote: It works on Free42, the accuracy is about 1.E-4 for GX1(.5) Please take a look at the latest BASIC version. Conversion to HP-41C is left as an exercise to the reader :-) You can start with the extant RPN code, although it’s not properly optimized as it was just a test. Also, if you use Free42 remember the HP-41C has no recall arithmetic. The lack of that feature might make it difficult to do it all on the stack. Anyway it won’t hurt using a numbered register or two, most important it to keep the program as compact as possible. |
|||
05-01-2020, 11:59 PM
Post: #6
|
|||
|
|||
RE: Γ(x+1) [HP-41C]
(04-30-2020 08:35 PM)Gerson W. Barbosa Wrote: Negative integer arguments should return a division by zero error, but because of numerical limitations this won’t occur ... My guess HP-75C were running with default RADIANS, and HP-71B were on DEGREES If HP-71B were on RADIANS, (-71.06)! = -1.08421623308E-99, error = 308 - 244 = 64 ULP To make it work on both angle units, do angle reduction with MOD 10 INPUT X 15 P=1 @ Q=0 20 IF X<0 THEN Q=1 @ W=X @ X=-X 25 IF X<4 THEN X=X+4 @ P=X*(X-1)*(X-2)*(X-3) 30 Y=2*X 35 C=41/30-X/38+X*X/92 40 Z=X+1/(6-1/(Y+6/(7-6/(Y+C)))) 45 F=SQR(2*Z*PI)*(X/EXP(1))^X/P 50 IF Q THEN F=W*PI/(F*SIN(MOD(W,2)*ACOS(-1))) 55 DISP F >DEFAULT OFF ! turn div-by-0 as error >RADIANS >RUN ? -71.06 -1.08421623254E-99 >RUN ? -2 ERR L50:/Zero Using Sinc function , Euler’s reflection formula is easy to remember: (x!)(-x)! sinc(pi*x) = 1 |
|||
05-02-2020, 11:04 AM
Post: #7
|
|||
|
|||
RE: Γ(x+1) [HP-41C]
(05-01-2020 11:59 PM)Albert Chan Wrote:(04-30-2020 08:35 PM)Gerson W. Barbosa Wrote: Negative integer arguments should return a division by zero error, but because of numerical limitations this won’t occur ... This explains why I was getting different results for that argument. Thanks! I only noticed it after I posted. I thought of changing the angle mode on the HP-75C but I didn’t remember the syntax is OPTION ANGLES DEGREES, so I would do it later. (05-01-2020 11:59 PM)Albert Chan Wrote: To make it work on both angle units, do angle reduction with MOD That does the trick, but it doesn’t return infinite results for negative odd integer arguments. On the HP-41C I haven’t thought of anything better than multiplying F by FRAC(W)/FRAC(W) to force the division by zero error. The HP-75C program is just a test for a possible HP-41C version. I have the math module for the HP-71B which includes GAMMA. I wish I had the HP-75C math module, but they appear to be even harder to find. I like the HP-75C because I can place it on a desk and quickly type my programs into it. (05-01-2020 11:59 PM)Albert Chan Wrote: Using Sinc function , Euler’s reflection formula is easy to remember: (x!)(-x)! sinc(pi*x) = 1 That’s a great mnemonic. I’ll keep it. |
|||
05-03-2020, 05:29 PM
(This post was last modified: 05-03-2020 10:05 PM by Gerson W. Barbosa.)
Post: #8
|
|||
|
|||
RE: Γ(x+1) [HP-41C]
01 LBL "GXP1"
02 1 03 STO 01 04 SF 05 05 X<>Y 06 X<=0? 07 X=0? 08 GTO 01 09 CF 05 10 STO 02 11 CHS 12 LBL 01 13 4 14 STO Z 15 X<=Y? 16 GTO 03 17 + 18 RCL X 19 1 20 + 21 LBL 02 22 1 23 - 24 ST* 01 25 DSE Z 26 GTO 02 27 LBL 03 28 RDN 29 ENTER 30 ENTER 31 41 32 30 33 / 34 RCL Y 35 38 36 / 37 - 38 RCL Y 39 X^2 40 92 41 / 42 + 43 X<>Y 44 ST+ Z 45 ST+ T 46 RDN 47 + 48 6 49 X<>Y 50 / 51 CHS 52 7 53 + 54 6 55 X<>Y 56 / 57 + 58 1/X 59 CHS 60 6 61 + 62 1/X 63 + 64 ST+ X 65 X<>Y 66 R^ 67 1 68 E^X 69 / 70 X<>Y 71 Y^X 72 X<>Y 73 PI 74 * 75 SQRT 76 * 77 RCL 01 78 / 79 FS? 05 80 GTO 04 81 PI 82 RCL 02 83 * 84 X<>Y 85 LASTX 86 -1 87 ACOS 88 * 89 SIN 90 * 91 / 92 LBL 04 93 END Γ(x+1), x = 0..69: RUN 1,000000000 1,000000001 1,999999999 6,000000014 24,00000001 120,0000001 719,9999998 5.040,000012 40.320,00007 362.880,0005 3.628.800,004 39.916.800,12 479.001.601,3 6.227.020.813, 8,717829135+10 1,307674373+12 2,092278995+13 3,556874291+14 6,402373724+15 1,216451007+17 2,432902018+18 5,109094238+19 1,124000732+21 2,585201681+22 6,204484052+23 1,551121011+25 4,032914629+26 1,088886949+28 3,048883422+29 8,841762138+30 2,652528633+32 8,222838734+33 2,631308388+35 8,683317650+36 2,952327992+38 1,033314794+40 3,719933246+41 1,376375334+43 5,230226253+44 2,039788232+46 8,159152904+47 3,345252679+49 1,405006120+51 6,041526302+52 2,658271563+54 1,196222233+56 5,502622253+57 2,586232450+59 1,241391572+61 6,082818683+62 3,041409332+64 1,551118754+66 8,065817499+67 4,274883375+69 2,308437015+71 1,269640355+73 7,109985964+74 4,052691987+76 2,350561344+78 1,386831189+80 8,320987107+81 5,075802258+83 3,146997390+85 1,982608348+87 1,268869339+89 8,247650677+90 5,443449430+92 3,647111106+94 2,480035546+96 1,711224567+98 Γ(x+1)/x!, x = 0..69: RUN 1,000000000+00 1,000000001+00 9,999999995-01 1,000000002+00 1,000000000+00 1,000000001+00 9,999999997-01 1,000000002+00 1,000000002+00 1,000000001+00 1,000000001+00 1,000000003+00 1,000000003+00 1,000000002+00 1,000000002+00 1,000000004+00 1,000000003+00 1,000000003+00 1,000000003+00 1,000000002+00 1,000000004+00 1,000000004+00 1,000000004+00 1,000000003+00 1,000000006+00 1,000000005+00 1,000000004+00 1,000000004+00 9,999999921-01 1,000000016+00 1,000000013+00 1,000000010+00 1,000000007+00 1,000000004+00 1,000000001+00 9,999999971-01 9,999999941-01 1,000000018+00 1,000000015+00 1,000000012+00 1,000000009+00 1,000000005+00 1,000000001+00 9,999999993-01 9,999999955-01 1,000000020+00 1,000000017+00 1,000000014+00 1,000000010+00 1,000000007+00 1,000000004+00 1,000000001+00 9,999999978-01 1,000000021+00 1,000000018+00 1,000000016+00 1,000000012+00 1,000000009+00 1,000000006+00 1,000000003+00 9,999999993-01 1,000000023+00 1,000000020+00 1,000000017+00 1,000000013+00 1,000000010+00 1,000000007+00 1,000000004+00 1,000000002+00 1,000000025+00 Γ(x+1), x = -19/2..17/2 RUN -2,633521509-05 2,238493289-04 -1,678869965-03 1,091265477-02 -6,001960120-02 2,700882051-01 -9,453087196-01 2,363271799+00 -3,544907695+00 1,772453847+00 8,862269277-01 1,329340391+00 3,323350974+00 1,163172841+01 5,234277792+01 2,878852784+02 1,871254308+03 1,403440731+04 1,192924620+05 Edited to change lines 06 and 07. Previously, 06 X!=0? 07 X>0? |
|||
05-09-2020, 02:42 PM
(This post was last modified: 05-09-2020 05:29 PM by Gerson W. Barbosa.)
Post: #9
|
|||
|
|||
RE: Γ(x+1) [HP-41C]
.
HP-41C: 01 LBL "GXP1" 02 1 03 STO 01 04 SF 05 05 X<>Y 06 X<=0? 07 X=0? 08 GTO 01 09 CF 05 10 STO 02 11 CHS 12 LBL 01 13 4 14 STO Z 15 X<=Y? 16 GTO 03 17 + 18 RCL X 19 1 20 + 21 LBL 02 22 1 23 - 24 ST* 01 25 DSE Z 26 GTO 02 27 LBL 03 28 X<>Y 29 4.13333 30 2.215 31 RCL Z 32 * 33 .4875 34 - 35 R^ 36 X^2 37 / 38 + 39 12 40 / 41 + 42 72 43 * 44 1/X 45 6 46 1/X 47 + 48 + 49 360 50 D-R 51 * 52 SQRT 53 X<>Y 54 1 55 E^X 56 / 57 R^ 58 Y^X 59 * 60 RCL 01 61 / 62 FS? 05 63 GTO 04 64 PI 65 RCL 02 66 * 67 X<>Y 68 LASTX 69 -1 70 ACOS 71 * 72 SIN 73 * 74 / 75 LBL 04 76 END 117 BYTES ———————- -69.95 -> -1.450781639E-97 {0 ULP} -2.5 -> 2.36327180(1) [4/3×√π] {1} -2.0 -> DATA ERROR -1.5 -> -3.544907(697) [-2√π] {5} -1.0 -> DATA ERROR -0.5-> 1.7724538(47) [√π] {4} 0 -> 1.00000000(1) {1} .5-> .88622692(77) [√(π/4)] {22} 1 -> 1.00000000(1) {1} 2 -> 1.999999999 {1} 3 -> 6.0000000(12) {12} 4 -> 24.0000000(3) {3} 5 -> 119.999999(5) {5} 6 -> 719.999999(5) {5} 7 -> 5040.0000(10) {10} 8 -> 40320.0000(6) {6} 9 -> 362880.000(4) {4} 10-> 3628800.00(2) {2} 11-> 39916800.(11) {11} 12-> 47900160(1.1) {11} 13-> 62270208(12) {12} 14-> 87178291(32) {12} 15-> 1.3076743(73)E12 {5} 20-> 2.4329020(18)E18 {10} 30-> 2.652528(633)E32 {35} 50-> 3.0414093(32)E64 {12} 60-> 8.3209871(07)E81 {6} 69-> 1.7112245(67)E98 {43} 69.95 -> 9.682847673E99 ———————- HP-75C: 10 INPUT X 15 P=1 @ Q=0 20 IF X<0 Q=1 @ W=X @ X=-X 25 IF X<4 THEN X=X+4 @ P=X*(X-1)*(X-2)*(X-3) 30 C=62/15-443/(200*X)-39/(80*X*X) 35 Z=(6*X+1+1/(12*X+C))/6 40 F=SQR(2*Z*PI)*(X/EXP(1))^X/P 45 IF Q THEN F=W*PI/(F*SIN(W*ACOS(-1))) 50 D=DISP F ————- -253.11 -> -2468119655(10)E-497 {2 ULP} -71.06 -> -1.084216232(55)E-99 {11} -2.5 -> 2.363271801(91) [4/3×√π] {70} -2.0 -> -9.99999999999E499 [-∞] -1.5 -> -3.54490770(200) [-2√π] {19} -1.0 -> -9.99999999999E499 [-∞] -0.5-> 1.772453850(91) [√π] {76} 0 -> 1.0000000000(3) {3} .5-> .886226925(833) [√(π/4)] {380} 1 -> 1.0000000000(2) {2} 2 -> 1.999999999(61) {39} 3 -> 5.99999999(801) {199} 4 -> 24.00000000(73) {73} 5 -> 120.0000000(24) {24} 6 -> 719.999999(860) {140} 7 -> 5039.99999(833) {167} 8 -> 40319.9999(865) {135} 9 -> 362879.999(892) {108} 10-> 3628799.999(06) {94} 11-> 39916799.99(15) {85} 12-> 479001599.9(26) {74} 13-> 6227020799.(21) {79} 14-> 87178291(190.7) {93} 15-> 1.30767436(787)E12 {13} 20-> 2.432902008(10)E18 {8} 30-> 2.65252859(778)E32 {34} 50-> 3.041409320(40)E64 {23} 60-> 8.32098711(301)E81 {27} 69-> 1.711224524(14)E98 {14} 69.95 -> 9.68284767(192)E99 {108} 253.1 -> 8.998861511(22)E499 {23} ANGLE OPTION DEGREES For better accuracy in radians mode change line 45 to 45 IF Q THEN F=W*PI/(F*SIN(MOD(W,2)*ACOS(-1))) per Albert Chan’s suggestion above. For best 12-digit results change line 30 to 30C=4.1332883071+2.1999058932/X-.3505828048/(X*X)-.2950235942/X^3 ————- Edited to fix a few typos. |
|||
09-10-2020, 10:56 PM
(This post was last modified: 09-11-2020 01:28 PM by Albert Chan.)
Post: #10
|
|||
|
|||
RE: Γ(x+1) [HP-41C]
I tried turning Stirling's formula's correction to Gamma, in continued fraction form.
Amazingly, every divide gives me back 2 terms. XCas> c3(x) := 1 + 1/(12x-1/2+1/(720/293*x+1/(7211316/4406147*x))) \(x \rightarrow 1+\frac{1}{\Large 12x- \frac{1}{2}+\frac{1}{\frac{720}{293}x+\frac{1}{\frac{7211316}{4406147}x}}}\) XCas> series(c3(x), x=inf, polynom) \(1+\frac{1}{12}\left({1\over x}\right) +\frac{1}{288} \left({1\over x}\right)^2 -\frac{139}{51840} \left({1\over x}\right)^3 -\frac{571}{2488320} \left({1\over x}\right)^4 +\frac{163879}{209018880} \left({1\over x}\right)^5 +\frac{5246819}{75246796800} \left({1\over x}\right)^6 \) All terms matches correctly to Series of Gamma(x) / (sqrt(2*pi/x) * (x/e)^x), x=inf Below, we define 3 functions, FNS(x)=sinc(pi*x) , FNF(n)=n! , FNG(x)=Γ(x) Code: 10 DEF FNS(X)=SIN(ACOS(-1)*MOD(X,2))/(PI*X) ! = sinc(pi*x) >RUN >FNF(5), FNF(10), FNF(15) 120 3628800 1.307674368E12 >X=1.1 ! check reflection formula (FNG does not do reflection) >FNF(X)*FNF(-X)*FNS(X), FNG(1+X)*FNG(1-X)*FNS(X) 1 1 >FOR X=1 TO 2 STEP .1 @ G=FNG(X) @ X,G,GAMMA(X)-G @ NEXT X 1 1 0 1.1 .951350769865 .000000000002 1.2 .918168742399 .000000000001 1.3 .897470696308 -.000000000002 1.4 .887263817504 -.000000000001 1.5 .886226925454 -.000000000001 1.6 .893515349285 .000000000003 1.7 .908638732849 .000000000004 1.8 .931383770985 -.000000000005 1.9 .961765831906 .000000000001 2 1 0 |
|||
09-13-2020, 12:49 PM
Post: #11
|
|||
|
|||
RE: Γ(x+1) [HP-41C]
We can easily get reciprocal of continued fraction (here, b is rest of the CF terms).
\(\large 1 ÷ \left( 1 + \Large {1 \over (a-{1\over2})\;+\;b\;} \right) = \frac{(a-{1\over2})\;+\;b}{(a+{1\over2})\;+\;b} = \large 1 - \Large {1 \over (a+{1\over2})\;+\;b\;} \) Example, this is the code for 1/Γ(x), using correction 1/c3(x) Code: 50 DEF FNR(X) ! = 1/gamma |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)