Loading [MathJax]/extensions/Safe.js


Post Reply 
(32S/32SII) Riemann-Liouville Fractional Integral of x^p
12-25-2024, 05:51 PM
Post: #1
(32S/32SII) Riemann-Liouville Fractional Integral of x^p
From: https://edspi31415.blogspot.com/2024/10/...ville.html

The Riemann-Liouville integral of f(t) = t^p, where p is a real number is:

cDx^(-v) = 1 / Γ(v) * ∫( (x – t) * t^p dt, t = c, t = x)
= ∫( ((x – t) * t^p) / (v -1)! dt, t = c, t = x)

There are two programs:

F: Integral
I: Integrand

I used the Swiss Micros DM32.

Code:
LBL F
INPUT C
INPUT X
INPUT V
INPUT P
FN= I
RCL C
RCL X
∫ FN d T
RTN

LBL I
RCL X
RCL- T
RCL V
1
-
y^x
RCL T
RCL P
y^x
×
RCL V
1
-
x!
÷
RTN

Swiss Micros file: https://drive.google.com/file/d/1E-wUq4G...sp=sharing

Source

Kimeu, Joseph M., "Fractional Calculus: Definitions and Applications" (2009).Masters Theses & Specialist Projects. Paper 115. http://digitalcommons.wku.edu/theses/115
Visit this user's website Find all posts by this user
Quote this message in a reply
Post Reply 




User(s) browsing this thread: 1 Guest(s)