(32S/32SII) Riemann-Liouville Fractional Integral of x^p
|
12-25-2024, 05:51 PM
Post: #1
|
|||
|
|||
(32S/32SII) Riemann-Liouville Fractional Integral of x^p
From: https://edspi31415.blogspot.com/2024/10/...ville.html
The Riemann-Liouville integral of f(t) = t^p, where p is a real number is: cDx^(-v) = 1 / Γ(v) * ∫( (x – t) * t^p dt, t = c, t = x) = ∫( ((x – t) * t^p) / (v -1)! dt, t = c, t = x) There are two programs: F: Integral I: Integrand I used the Swiss Micros DM32. Code: LBL F Swiss Micros file: https://drive.google.com/file/d/1E-wUq4G...sp=sharing Source Kimeu, Joseph M., "Fractional Calculus: Definitions and Applications" (2009).Masters Theses & Specialist Projects. Paper 115. http://digitalcommons.wku.edu/theses/115 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)