Post Reply 
EXC/ x<>Rn for stack efficiency
06-27-2017, 09:42 PM (This post was last modified: 06-27-2017 09:46 PM by Matt Agajanian.)
Post: #41
RE: EXC/ x<>Rn for stack efficiency
(06-19-2017 05:44 PM)GrampaDave Wrote:  
Quote:Herman the moonshiner

But HP had better names, whose sly humor made them memorable, at least to native English speakers.

Radio Engineer Ann Tenor
Arctic explorer Jean-Claude Coulaire
Logistics specialist Justin Tyme

(I confess I made up that last one, but it's exactly in the HP style.)

Yea, these were what added to the fun & enjoyment of learning how to use our HP calculators.

On another note, as advanced and to compete with the SR-52, I wonder why HP did not include an EXC function on the 67, but waited until the HP-41.
Find all posts by this user
Quote this message in a reply
06-28-2017, 12:42 AM (This post was last modified: 06-28-2017 12:43 AM by Thomas Okken.)
Post: #42
RE: EXC/ x<>Rn for stack efficiency
(06-27-2017 09:42 PM)Matt Agajanian Wrote:  
(06-19-2017 05:44 PM)GrampaDave Wrote:  But HP had better names, whose sly humor made them memorable, at least to native English speakers.

Radio Engineer Ann Tenor
Arctic explorer Jean-Claude Coulaire
Logistics specialist Justin Tyme

(I confess I made up that last one, but it's exactly in the HP style.)

Yea, these were what added to the fun & enjoyment of learning how to use our HP calculators.

On another note, as advanced and to compete with the SR-52, I wonder why HP did not include an EXC function on the 67, but waited until the HP-41.

Because the HP-67 had "merged keystrokes," meaning every instruction was one byte. PANAMATIK posted this very enlightening link the other day: http://www.panamatik.de/ProgramCodes.pdf

With the HP-41C, HP let go of the one-byte-per-instruction thing, and that enabled them to do what TI was doing, i.e. allow register numbers from 00 to 99, and add new functions like EXC a.k.a. X<>.

In the HP-42S, they took this even further, adding RCL+ etc., and alphanumeric variable names.
Visit this user's website Find all posts by this user
Quote this message in a reply
06-28-2017, 01:37 AM (This post was last modified: 06-28-2017 01:57 AM by Matt Agajanian.)
Post: #43
RE: EXC/ x<>Rn for stack efficiency
Yes, I saw that table when it was posted. Maybe I'm missing something in your explanation. How would [f] [x<>] n (or [x<>] n) consume more than one/two bytes? HP had room for [STO] +, -, x, / n. So. wouldn't the exchange function consume one/two bytes?

ADDENDUM

Okay, upon inspecting the HP-67 table, I think I see what you're saying.

Each instruction had to be given a one-byte hex code. After all was said and done, if I read the 67 table correctly, there are only four vacant spaces. So, there was no way to give 11 (0-9, (i) ) op codes for register exchange functionality. And, limiting exchange to four registers doesn't make sense. Right?
Find all posts by this user
Quote this message in a reply
07-20-2022, 07:03 PM
Post: #44
RE: EXC/ x<>Rn for stack efficiency
This looks like an XY problem to me.
Here is a program to calculate the great circle distance between two points A and B on a sphere.
Since no registers are used, the initial question X is not relevant.
All you ever wanted is a solution for Y.

Program

This program works for most HP calculators:

HP-25
Code:
01: 21       : x<->y
02: 22       : Rv
03: 41       : -
04: 14 05    : f COS
05: 21       : x<->y
06: 01       : 1
07: 14 09    : f ->R
08: 21       : x<->y
09: 22       : Rv
10: 61       : *
11: 21       : x<->y
12: 01       : 1
13: 14 09    : f ->R
14: 21       : x<->y
15: 22       : Rv
16: 61       : *
17: 22       : Rv
18: 61       : *
19: 21       : x<->y
20: 22       : Rv
21: 51       : +
22: 15 05    : g COS-1

HP-15C
Code:
   001 {          34 } x↔y
   002 {          33 } R⬇
   003 {          30 } −
   004 {          24 } COS
   005 {          34 } x↔y
   006 {           1 } 1
   007 {       42  1 } f → R
   008 {          34 } x↔y
   009 {          33 } R⬇
   010 {          20 } ×
   011 {          34 } x↔y
   012 {           1 } 1
   013 {       42  1 } f → R
   014 {          34 } x↔y
   015 {          33 } R⬇
   016 {          20 } ×
   017 {          33 } R⬇
   018 {          20 } ×
   019 {          34 } x↔y
   020 {          33 } R⬇
   021 {          40 } +
   022 {       43 24 } g COS⁻¹

HP-42S
Code:
00 { 24-Byte Prgm }
01 X<>Y
02 R↓
03 -
04 COS
05 X<>Y
06 1
07 →REC
08 X<>Y
09 R↓
10 ×
11 X<>Y
12 1
13 →REC
14 X<>Y
15 R↓
16 ×
17 R↓
18 ×
19 X<>Y
20 R↓
21 +
22 ACOS
23 END

Example

This is the example provided for the SR-56:

Point A: \(33^\circ 54.5'\) N, \(94^\circ 56.2'\) W
Point B: \(33^\circ 59.6'\) S, \(151^\circ 25.6'\) E

DEG

33.5430 →HR
33.908333

94.5612 →HR
94.936667

-33.5936 →HR
-33.993333

-151.2536 →HR
-151.426667

R/S
125.999888

If we want to get the result in nautical miles we can multiply the result by 60:

60
×

7559.993276

Or then we could convert degrees to radians and multiply the result by earth's radius.

Formula

(06-15-2017 10:29 AM)Paul Dale Wrote:  It ought to be possible to calculate the distance using the modified Vincenty formula on the 25:

[Image: c3159d773b79d31c3f5ff176a6262fabd20cdbc9]

These programs use the same formula as the original program for the SR-56:

\(
\Delta \sigma =\arccos \left ( \sin \phi _{1}\sin \phi _{2}+\cos \phi _{1}\cos \phi _{2}\cos(\Delta \lambda ) \right )
\)

Conversion

(06-15-2017 09:01 AM)Dieter Wrote:  This will for instance show that the complete routine in the first steps (which is called several times as SBR 00) is obsolete since it does a simple d.ms to decimal degrees conversion (e.g. it turns 42°50' into 42,8333°). The 25 and 33 have a dedicated function for this.

Well, not exactly.
Therefore we have to convert e.g. \(94^\circ {56.2}'\) to \(94^\circ {56}' {12}''\) in our heads.

References
The original link to this document appears to be broken.

(06-15-2017 09:01 AM)Dieter Wrote:  But I am sure that HP25 great circle programs already exist. ;-)
Cf. Programs/Library1/HP25-AP24.25:
Code:
01: 24 00    : RCL 0
02: 14 04    : f SIN
03: 24 01    : RCL 1
04: 14 04    : f SIN
05: 61       : *
06: 24 00    : RCL 0
07: 14 05    : f COS
08: 24 01    : RCL 1
09: 14 05    : f COS
10: 61       : *
11: 24 02    : RCL 2
12: 14 05    : f COS
13: 61       : *
14: 51       : +
15: 23 03    : STO 3
16: 15 05    : g COS-1
17: 23 04    : STO 4
18: 06       : 6
19: 00       : 0
20: 61       : *
21: 74       : R/S
22: 24 01    : RCL 1
23: 14 04    : f SIN
24: 24 00    : RCL 0
25: 14 04    : f SIN
26: 24 03    : RCL 3
27: 61       : *
28: 41       : -
29: 24 00    : RCL 0
30: 14 05    : f COS
31: 71       : /
32: 24 04    : RCL 4
33: 14 04    : f SIN
34: 71       : /
35: 15 05    : g COS-1
36: 24 02    : RCL 2
37: 14 04    : f SIN
38: 15 41    : g x<0
39: 13 47    : GTO 47
40: 22       : Rv
41: 03       : 3
42: 06       : 6
43: 00       : 0
44: 21       : x<->y
45: 41       : -
46: 13 00    : GTO 00
47: 22       : Rv
48: 13 00    : GTO 00
49: 13 00    : GTO 00
Find all posts by this user
Quote this message in a reply
Post Reply 




User(s) browsing this thread: 4 Guest(s)