(35S) Quick integration
|
11-18-2022, 04:59 PM
Post: #21
|
|||
|
|||
RE: (35S) Quick integration | |||
11-19-2022, 01:42 AM
Post: #22
|
|||
|
|||
RE: (35S) Quick integration
This inquiry concerns the calculus of integrating the sqrt(1+4x2) function.
I have elementry calculus skills. I have run the function through the hp prime calculator in cas mode, xcas, and two versions of maple (version 12 and old win 3.1 version). I get results containing natural logs in on the prime. and I get results containing arcsinh in Maple. I have done the math calculations on the prime, dm 15L, free42, hp15c android app, hp 35s, hp50g, and some others calcs. I get the same numerical answer, eg 1.47894285.... Can someone walk me througj the symbolic calculation of the function? Thanks . |
|||
11-19-2022, 04:58 AM
Post: #23
|
|||
|
|||
RE: (35S) Quick integration
(11-19-2022 01:42 AM)Liamtoh Resu Wrote: Can someone walk me through the symbolic calculation of the function? ∫(sqrt(1+4*x^2) dx) // let y=2x, dy = 2 dx = ∫(sqrt(1+y^2) (dy/2)) // let y=sinh(z), dy = cosh(z) dz = ∫(cosh(z) (cosh(z)/2 dz)) = ∫((1+cosh(2z))/4 dz) // cosh(z)^2 = (1+cosh(2z))/2 = (z + sinh(2z)/2)/4 // sinh(2z) = 2*sinh(z)*cosh(z) = (z + sinh(z)*cosh(z))/4 ∫(x = 0 .. 1) = ∫(y = 0 .. 2) = ∫(z = 0 .. asinh(2)) = (asinh(2) + 2*sqrt(5))/4 ≈ 1.47894285754 |
|||
11-19-2022, 05:19 AM
Post: #24
|
|||
|
|||
RE: (35S) Quick integration
(11-19-2022 01:42 AM)Liamtoh Resu Wrote: Can someone walk me through the symbolic calculation of the function? I used the substitution: \( \begin{align} 2x &= \sinh(u) \\ 4x^2 &= \sinh^2(u) \\ 1 + 4x^2 &= 1 + \sinh^2(u) \\ &= \cosh^2(u) \\ \sqrt{1 + 4x^2} &= \cosh(u) \\ \end{align} \) After applying \(\frac{d}{du}\) on both sides of the substitution we get: \( \begin{align} 2\frac{dx}{du} &= \cosh(u) \\ \end{align} \) From this: \( \begin{align} dx &= \tfrac{1}{2}\cosh(u) \, du \\ \end{align} \) Replace the substitution in the original integral: \( \begin{align} \int \sqrt{1 + 4 x^2} \, dx &= \tfrac{1}{2} \int \cosh^2(u) \, du \\ &= \tfrac{1}{4} \int 1 + \cosh(2u) \, du \\ &= \tfrac{1}{4} \left( u + \tfrac{1}{2} \sinh(2u) \right) +c \\ &= \tfrac{1}{8} \left( 2u + \sinh(2u) \right) +c \\ \end{align} \) Here we used the double angle formula: \( \begin{align} \cosh(2u) = 2\cosh^2(u) - 1 \end{align} \) Now we can substitute the lower and upper limits: \( \begin{align} x = 0 \Rightarrow 2x = 0 &= \sinh(u) \rightarrow u = 0 \\ x = 1 \Rightarrow 2x = 2 &= \sinh(u) \rightarrow u = \sinh^{-1}(2) \\ \end{align} \) Plugging them into the antiderivative leads to: \( \begin{align} \int_0^1 \sqrt{1 + 4 x^2} \, dx &= \frac{2 \sqrt{5} + \sinh^{-1}(2)}{4} \\ \end{align} \) Here again we used another double angle formula: \( \begin{align} \sinh(2u) &= 2\sinh(u)\cosh(u) \\ &= 2 \cdot 2x \cdot \sqrt{1 + 4x^2} \end{align} \) However e.g. WolframAlpha comes up with a different substitution: \( \begin{align} x &= \frac{\tan(u)}{2} \\ \end{align} \) But I'm too lazy to write that down here. Maybe you want to give it a try? References |
|||
11-19-2022, 05:36 AM
Post: #25
|
|||
|
|||
RE: (35S) Quick integration | |||
11-19-2022, 04:45 PM
Post: #26
|
|||
|
|||
RE: (35S) Quick integration
Thanks to everybody who replied. It will take me awhile to parse
the answers. |
|||
11-28-2022, 06:49 PM
Post: #27
|
|||
|
|||
RE: (35S) Quick integration
Another way to integrate, without knowing trig or hyperbolic identities.
Euler substitution, to remove square root: √(x^2+1) = x + t At the end of blackpenredpen video, we have: ∫(√(x^2+1) dx) = (x*√(x^2+1) + ln(x+√(x^2+1))) / 2 + C OP integral is now easy to calculate. ∫(√(1+4*x^2), x = 0 .. 1) // let y=2x, dy=2 dx = 1/2 * ∫√(y^2+1), y = 0 .. 2) = 1/2 * preval((x*√(x^2+1) + ln(x+√(x^2+1))) / 2, 0, 2) = (2*√5 + ln(2+√5)) / 4 |
|||
12-22-2022, 01:54 PM
(This post was last modified: 08-19-2023 10:47 AM by Albert Chan.)
Post: #28
|
|||
|
|||
RE: (35S) Quick integration
(11-28-2022 06:49 PM)Albert Chan Wrote: At the end of blackpenredpen video, we have: Another way, by guessing shape of RHS Let x = sinh(y) → dx = cosh(y) dy Matching integral, we wanted cosh(y) dx Guess from integration by part term, cosh(y)*x d(cosh(y)*x) = d(sinh(2y)/2) = cosh(2y) dy = (2*cosh(y)^2-1) dy = 2*cosh(y) dx - dy cosh(y) dx = (d(x*√(x^2+1)) + dy) / 2 --> ∫(√(x^2+1) dx) = (x*√(x^2+1) + asinh(x)) / 2 + C Mathematica way, let x = tan(y), dx = sec(y)^2 dy ∫(√(x^2+1) dx) = ∫(sec(y)^3 dy) ∫(sec(y)^3 dy) = ∫(sec(y) d(tan(y)) = tan(y)*sec(y) - ∫(tan(y) * (tan(y) sec(y) dy)) // integrate by parts = tan(y)*sec(y) + ∫(sec(y) dy) - ∫(sec(y)^3 dy) From definition of Gudermannian function inverse ∫(sec(y)^3 dy) = (tan(y)*sec(y) + asinh(tan(y))) / 2 + C --> ∫(√(x^2+1) dx) = (x*√(x^2+1) + asinh(x)) / 2 + C This is also the approach used by https://www.integral-calculator.com/ |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)