Post Reply 
Sharp EL-5150 review by calculator culture
11-12-2022, 07:38 PM (This post was last modified: 11-13-2022 03:31 AM by robve.)
Post: #1
Sharp EL-5150 review by calculator culture




I have one with the original cover and manual bought at an auction. These are hard to find these days.

I like it. It's not too difficult to program in AES-II, which is OK on this model like the EL-5200 (EL-9000). AES has some limitations compared to BASIC or Casio's fx calculator "BASIC" dialects. But overall, this version of AES-II is quote powerful with conditionals, loops and subroutines.

Some AER EL-5150/EL-5200 programs I wrote to try out these machines:

Code:
Solve f(x)=0 for x with the bisection method
AER-II for SHARP EL-5200/EL-9000/EL-5150

Specify the function in subroutine ➊ 
Specify search brackets [A,B] to obtain A<=X<=B such that f(X)=0
If the final X=A or X=B then the root may not be within [A,B]

(spacing added for legibility, to be ignored)

M:f(AB)=B-A)÷2⇒H A⇒X ➊ Y>0→Y→[B⇒A ‐H⇒H] A+H⇒X ↳➊ 0>Y→Y→[X⇒A] H÷2⇒H A+H⇒X X≠A→Y→[↰] X
➊:X²-2⇒Y

Code:
LAW OF COSINES a = √(b²+c²-2bcCOS A)
AER-II for SHARP EL-5200/EL-9000/EL-5150

EL-5150 applications page 5 (improved version)
Specify a=0 and b,c,α (angle A) to obtain side a and angles β,θ (B,C)
Specify a,b,c to obtain angles α,β,θ (A,B,C)

M:a×b×c>0→Y→[➊]→N→[➍],➋,➌
➊:α=COS⁻¹((c²+b²-a²)÷(2c×b
➋:β=COS⁻¹((c²+a²-b²)÷(2a×c
➌:θ=COS⁻¹((a²+b²-c²)÷(2a×b
➍:a=√(b²+c²-2b×cCOS α

Code:
DIFFERENTIATE
Function to differentiate is defined in subroutine ➊
AER-I/II for SHARP EL-5200/EL-9000/EL-5150

AER-II

M:h=ᴱ‐4(ᴱ‐9+ABS x␣x=x+h➊d=y␣x=x-2h➊(d-y)÷2h
➊:y=SIN x

AER-I (less memory, spacing added for legibility, to be ignored)

M:f(X)=ᴱ‐4(ᴱ‐9+ABS X)⇒H X+H⇒X ➊ Y⇒Z X-2H⇒X ➊ Z-Y)÷2H
➊:SIN X⇒Y

Code:
Log-Gamma function with 10 digits precision, requires RAD mode
Admits negative X (non-integer)
Stirling's expansion method http://rskey.org/el5150
AER-II for SHARP EL-5200/EL-9000/EL-5150

(spacing added for legibility, to be ignored)

M:f(X)=1⇒G 1⇒S X>0→N→[X⇒S ‐X⇒X] ↳X>5→N→[GX⇒G X+1⇒X ↰] XLN X-X+LN √(2π÷X)-LN G+((((1÷1188÷X²-1÷1680)÷X²+1÷1260)÷X²-1÷360)÷X²+1÷12)÷X⇒G S>0→N→[‐π÷S÷SIN Sπ)-G⇒G] G

Improved version:
M:f(X)=1⇒G X⇒S ABS X⇒X ↳X>5→N→[GX⇒G X+1⇒X ↰] XLN X-X+LN √(2π÷X)-LN G+((((1÷1188X²-1÷1680)÷X²+1÷1260)÷X²-1÷360)÷X²+1÷12)÷X⇒G S>0→N→[‐π÷SSIN Sπ)-G⇒G] G

Code:
GCD
AER-II for SHARP EL-5200/EL-9000/EL-5150

(spacing added for legibility, to be ignored)

M:f(AB)=↳B⇒G A-BINT(A÷B)⇒B G⇒A B≠0→Y→[↰] G

Code:
QUADRATIC FORMULA
AER-II for SHARP EL-5200/EL-9000/EL-5150

M:➊D>=0→Y→[➋◣]➌
➊:b²-4a×c⇒D
➋:x₁=‐b+√D)÷2a,x₂=‐b-√D)÷2a
➌:α=‐b÷2a,β=√ABS D÷2a

Code:
FRACTIONS BY RATIONAL APPROXIMATION
AER-I/II for SHARP EL-5200/EL-9000/EL-5150

Specify A to obtain numerator B and denominator C such that B/C=A

(spacing added for legibility, to be ignored)

M:f(A)=1⇒B⇒I 0⇒C⇒J A⇒E ↳ INT E⇒D E-D⇒E BD+J⇒F B⇒J F⇒B CD+I⇒F C⇒I F⇒C B÷C⇒D A≠D→Y→[E⁻¹⇒E ↰]B,C

Code:
Solve f(x)=0 for x with the secant method
AER-I/II for SHARP EL-5200/EL-9000/EL-5150

Specify the function in subroutine ➊ 
Specify starting point x₀ (or X in AER-I) to obtain x such that f(x)=0

AER-II

M:x=x₀➊z=y␣x=x+ᴱ‐4↳➊y≠z→Y→[➋↰]x₀
➊:y=x²-2
➋:z=x-y(x-x₀)÷(y-z)␣x₀=x␣x=z␣z=y

AER-I (less memory, spacing added for legibility, to be ignored)

M:f(X)=X⇒W ➊ Y⇒Z X+ᴱ‐4⇒X ↳➊ Y≠Z→Y→[X-Y(X-W)÷(Y-Z)⇒Z X⇒W Z⇒X Y⇒Z ↰] W
➊:X²-2⇒Y

Code:
Simpson quadrature + high accuracy Simpson up to eps precision
AER-II for SHARP EL-5200/EL-9000/EL-5150

1. the first AER program takes n to integrate the function defined as
   subroutine ➊ at 2n+1 points

2. the second AER program takes eps (e) max relative error for result to refine
   n up to 256 for 513 points to integrate the function defined as subroutine
   ➊.  Displays i=<integral> when the relative error is below eps, otherwise
   displays ANS 1: <integral> and ANS 2: <rel.err>

Integrate
M:h=(‐a+b)÷2n␣z=0␣x=a↳x=x+h➊z=z+2y␣x=x+h➊z=z+y␣n=n-1␣n>0→Y→[↰]z=2i-y␣x=a➊h(z+y)÷3
➊:y=eˣ‐(x²÷2)÷√2π

Integrate(eps)
M:x=a➊z=y␣x=b➊d=b-a␣z=d(y+z␣n=1␣v=1ᴱ99↳h=d÷n␣u=0␣x=a+h÷2␣i=1↳➊u=u+y␣x=x+h␣i=i+1␣n>=i→Y→[↰]w=z÷2␣z=w+u*d÷n␣y=2z-w)÷3␣ABS(y-v)>eABS y+e→N→[i=y◣]256>n→Y→[v=y␣n=2n↰]y,ABS(y-v)÷(ABS y+e
➊:y=eˣ‐(x²÷2)÷√2π

Code:
LAW OF SINES a/SIN A = b/SIN B = c/SIN C
AER-II for SHARP EL-5200/EL-9000/EL-5150

EL-5150 applications page 6 (improved version for any angle mode)
Specify a,b=0 and β,θ (angles B,C) to obtain side b, angle α (A) and side c
Specify a,b,θ to obtain angles α,β (A,B) and side c

M:a×b>0→Y→[➊]→N→[➍],➋,➌
➊:β=SIN⁻¹(bSIN θ÷a
➋:α=2COS⁻¹0-θ-β
➌:c=aSIN α÷SIN θ
➍:b=aSIN β÷SIN θ

- Rob

EDIT: changed thick E symbol, that won't display, to ᴱ

"I count on old friends to remain rational"
Visit this user's website Find all posts by this user
Quote this message in a reply
Post Reply 




User(s) browsing this thread: