Sharp EL-5150 review by calculator culture
11-12-2022, 07:38 PM (This post was last modified: 11-13-2022 03:31 AM by robve.)
Post: #1
 robve Senior Member Posts: 459 Joined: Sep 2020
Sharp EL-5150 review by calculator culture

I have one with the original cover and manual bought at an auction. These are hard to find these days.

I like it. It's not too difficult to program in AES-II, which is OK on this model like the EL-5200 (EL-9000). AES has some limitations compared to BASIC or Casio's fx calculator "BASIC" dialects. But overall, this version of AES-II is quote powerful with conditionals, loops and subroutines.

Some AER EL-5150/EL-5200 programs I wrote to try out these machines:

Code:
Solve f(x)=0 for x with the bisection method AER-II for SHARP EL-5200/EL-9000/EL-5150 Specify the function in subroutine ➊  Specify search brackets [A,B] to obtain A<=X<=B such that f(X)=0 If the final X=A or X=B then the root may not be within [A,B] (spacing added for legibility, to be ignored) M:f(AB)=B-A)÷2⇒H A⇒X ➊ Y>0→Y→[B⇒A ‐H⇒H] A+H⇒X ↳➊ 0>Y→Y→[X⇒A] H÷2⇒H A+H⇒X X≠A→Y→[↰] X ➊:X²-2⇒Y

Code:
LAW OF COSINES a = √(b²+c²-2bcCOS A) AER-II for SHARP EL-5200/EL-9000/EL-5150 EL-5150 applications page 5 (improved version) Specify a=0 and b,c,α (angle A) to obtain side a and angles β,θ (B,C) Specify a,b,c to obtain angles α,β,θ (A,B,C) M:a×b×c>0→Y→[➊]→N→[➍],➋,➌ ➊:α=COS⁻¹((c²+b²-a²)÷(2c×b ➋:β=COS⁻¹((c²+a²-b²)÷(2a×c ➌:θ=COS⁻¹((a²+b²-c²)÷(2a×b ➍:a=√(b²+c²-2b×cCOS α

Code:
DIFFERENTIATE Function to differentiate is defined in subroutine ➊ AER-I/II for SHARP EL-5200/EL-9000/EL-5150 AER-II M:h=ᴱ‐4(ᴱ‐9+ABS x␣x=x+h➊d=y␣x=x-2h➊(d-y)÷2h ➊:y=SIN x AER-I (less memory, spacing added for legibility, to be ignored) M:f(X)=ᴱ‐4(ᴱ‐9+ABS X)⇒H X+H⇒X ➊ Y⇒Z X-2H⇒X ➊ Z-Y)÷2H ➊:SIN X⇒Y

Code:
Log-Gamma function with 10 digits precision, requires RAD mode Admits negative X (non-integer) Stirling's expansion method http://rskey.org/el5150 AER-II for SHARP EL-5200/EL-9000/EL-5150 (spacing added for legibility, to be ignored) M:f(X)=1⇒G 1⇒S X>0→N→[X⇒S ‐X⇒X] ↳X>5→N→[GX⇒G X+1⇒X ↰] XLN X-X+LN √(2π÷X)-LN G+((((1÷1188÷X²-1÷1680)÷X²+1÷1260)÷X²-1÷360)÷X²+1÷12)÷X⇒G S>0→N→[‐π÷S÷SIN Sπ)-G⇒G] G Improved version: M:f(X)=1⇒G X⇒S ABS X⇒X ↳X>5→N→[GX⇒G X+1⇒X ↰] XLN X-X+LN √(2π÷X)-LN G+((((1÷1188X²-1÷1680)÷X²+1÷1260)÷X²-1÷360)÷X²+1÷12)÷X⇒G S>0→N→[‐π÷SSIN Sπ)-G⇒G] G

Code:
GCD AER-II for SHARP EL-5200/EL-9000/EL-5150 (spacing added for legibility, to be ignored) M:f(AB)=↳B⇒G A-BINT(A÷B)⇒B G⇒A B≠0→Y→[↰] G

Code:
QUADRATIC FORMULA AER-II for SHARP EL-5200/EL-9000/EL-5150 M:➊D>=0→Y→[➋◣]➌ ➊:b²-4a×c⇒D ➋:x₁=‐b+√D)÷2a,x₂=‐b-√D)÷2a ➌:α=‐b÷2a,β=√ABS D÷2a

Code:
FRACTIONS BY RATIONAL APPROXIMATION AER-I/II for SHARP EL-5200/EL-9000/EL-5150 Specify A to obtain numerator B and denominator C such that B/C=A (spacing added for legibility, to be ignored) M:f(A)=1⇒B⇒I 0⇒C⇒J A⇒E ↳ INT E⇒D E-D⇒E BD+J⇒F B⇒J F⇒B CD+I⇒F C⇒I F⇒C B÷C⇒D A≠D→Y→[E⁻¹⇒E ↰]B,C

Code:
Solve f(x)=0 for x with the secant method AER-I/II for SHARP EL-5200/EL-9000/EL-5150 Specify the function in subroutine ➊  Specify starting point x₀ (or X in AER-I) to obtain x such that f(x)=0 AER-II M:x=x₀➊z=y␣x=x+ᴱ‐4↳➊y≠z→Y→[➋↰]x₀ ➊:y=x²-2 ➋:z=x-y(x-x₀)÷(y-z)␣x₀=x␣x=z␣z=y AER-I (less memory, spacing added for legibility, to be ignored) M:f(X)=X⇒W ➊ Y⇒Z X+ᴱ‐4⇒X ↳➊ Y≠Z→Y→[X-Y(X-W)÷(Y-Z)⇒Z X⇒W Z⇒X Y⇒Z ↰] W ➊:X²-2⇒Y

Code:
Simpson quadrature + high accuracy Simpson up to eps precision AER-II for SHARP EL-5200/EL-9000/EL-5150 1. the first AER program takes n to integrate the function defined as    subroutine ➊ at 2n+1 points 2. the second AER program takes eps (e) max relative error for result to refine    n up to 256 for 513 points to integrate the function defined as subroutine    ➊.  Displays i=<integral> when the relative error is below eps, otherwise    displays ANS 1: <integral> and ANS 2: <rel.err> Integrate M:h=(‐a+b)÷2n␣z=0␣x=a↳x=x+h➊z=z+2y␣x=x+h➊z=z+y␣n=n-1␣n>0→Y→[↰]z=2i-y␣x=a➊h(z+y)÷3 ➊:y=eˣ‐(x²÷2)÷√2π Integrate(eps) M:x=a➊z=y␣x=b➊d=b-a␣z=d(y+z␣n=1␣v=1ᴱ99↳h=d÷n␣u=0␣x=a+h÷2␣i=1↳➊u=u+y␣x=x+h␣i=i+1␣n>=i→Y→[↰]w=z÷2␣z=w+u*d÷n␣y=2z-w)÷3␣ABS(y-v)>eABS y+e→N→[i=y◣]256>n→Y→[v=y␣n=2n↰]y,ABS(y-v)÷(ABS y+e ➊:y=eˣ‐(x²÷2)÷√2π

Code:
LAW OF SINES a/SIN A = b/SIN B = c/SIN C AER-II for SHARP EL-5200/EL-9000/EL-5150 EL-5150 applications page 6 (improved version for any angle mode) Specify a,b=0 and β,θ (angles B,C) to obtain side b, angle α (A) and side c Specify a,b,θ to obtain angles α,β (A,B) and side c M:a×b>0→Y→[➊]→N→[➍],➋,➌ ➊:β=SIN⁻¹(bSIN θ÷a ➋:α=2COS⁻¹0-θ-β ➌:c=aSIN α÷SIN θ ➍:b=aSIN β÷SIN θ

- Rob

EDIT: changed thick E symbol, that won't display, to ᴱ

"I count on old friends to remain rational"
 « Next Oldest | Next Newest »

User(s) browsing this thread: 1 Guest(s)