test new thread
|
05-24-2024, 07:26 AM
Post: #1
|
|||
|
|||
test new thread
The equation given by $y = mx + c$.
The integral from $a$ to $b$ of $x^2$ is: $$ \int_{a}^{b} x^2 \, dx $$ Here is a matrix: $$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} $$ The sum of the first $n$ natural numbers is: $$ \sum_{i=1}^{n} i = \frac{n(n+1)}{2} $$ The product of the first $n$ natural numbers is: $$ \prod_{i=1}^{n} i = n! $$ |
|||
05-25-2024, 07:27 PM
Post: #2
|
|||
|
|||
RE: test new thread
The integral from \(a\) to \(b\) of \(x^2\) is:
\[ \int_{a}^{b} x^2 \, dx \] Here is a matrix: \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) Quote this post to see how it is done. |
|||
05-26-2024, 04:03 AM
Post: #3
|
|||
|
|||
RE: test new thread
(05-25-2024 07:27 PM)Thomas Klemm Wrote: Here is a matrix: Using "bmatrix" instead of "pmatrix" yields square brackets: \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) <0|ΙΈ|0> -Joe- |
|||
05-29-2024, 02:08 PM
Post: #4
|
|||
|
|||
RE: test new thread
Hooooooo
Thanks :-D |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: