(38G) x^2+D*y^2=p Diophantine Solution
|
03-21-2015, 07:43 AM
(This post was last modified: 06-15-2017 01:54 PM by Gene.)
Post: #1
|
|||
|
|||
(38G) x^2+D*y^2=p Diophantine Solution
The programme CORNACCHIA finds the unique integer solution { x, y } of
x ^ 2 + D * y ^ 2 = p given D < p & p prime or returns 0 if there is no solution. The sub-programme SQRTMODP is here http://www.hpmuseum.org/forum/thread-3448.html eg For input { 23 694283029607 } the programme returns { 829512 16409 } in Ans & indeed 829512 ^ 2 + 23 * 16409 ^ 2 = 694283029607 Ans►L1: Ans(1)►Y: L1(2)►Z: {-Y,Z}: RUN SQRTMODP: IF Ans THEN MAX(Z-Ans,Ans)►B: Z►A: INT(√Z)►L: WHILE B>L REPEAT A MOD B►R: B►A: R►B END: √((Z-B^2)/Y)►C: IF FRAC(Ans) THEN 0: ELSE {B,C}: END: ELSE 0: END: |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)