For positive integer input N programme P returns the number of partitions of N, programme Q returns the number of partitions in discrete parts (same as in purely odd parts).
For info on partitions see
https://en.wikipedia.org/wiki/Partition_(number_theory)
Improvements to programme most welcome.
Code:
1 LBL P
2 CF 0
3 GTO R
1 LBL Q
2 SF 0
1 LBL R
2 RAD
3 STO A
4 24
5 1/x
6 FS? 0
7 +/-
8 +/-
9 +
10 STO G
11 FS? 0
12 GTO S
13 √x
14 1.5
15 1/x
16 √x
17 STO I
18 *
19 π
20 *
21 STO H
1 LBL S
2 CLx
3 STO B
4 1
5 STO C
6 FIX 0
1 LBL O
2 RCL C
3 STO D
4 CLx
5 STO E
1 LBL X
2 RCL C
3 RCL D
1 LBL T
2 RMDR
3 LASTx
4 x<>y
5 x≠0?
6 GTO T
7 1
8 +
9 x≠y?
10 GTO U
11 RCL C
12 x<>y
13 -
14 x=0?
15 GTO V
16 STO F
17 0.5
18 STO J
19 0
1 LBL W
2 RCL D
3 RCL* F
4 RCL/ C
5 FP
6 RCL- J
7 RCL F
8 RCL/ C
9 RCL- J
10 *
11 +
12 DSE F
13 GTO W
1 LBL V
2 4
3 1/x
4 +
5 2*A
6 RCL* D
7 RCL/ C
8 -
9 π
10 *
11 COS
12 STO+ E
1 LBL U
2 DSE D
3 GTO X
4 FS? 0
5 GTO Y
6 RCL H
7 RCL/ C
8 e^x
9 ENTER
10 ENTER
11 1/x
12 STO J
13 R↓
14 R↓
15 RCL- J
16 R↑
17 R↑
18 +
19 RCL* I
20 R↓
21 RCL/ G
22 R↑
23 RCL/ G
24 π
25 *
26 RCL/ C
27 x<>y
28 RCL G
29 √x
30 /
31 -
32 RCL C
33 √x
34 *
35 π
36 4
37 *
38 /
39 ENTER
40 ISG C
41 CLx
42 GTO Z
1 LBL Y
2 RCL G
3 π
4 RCL/ C
5 x^2
6 *
7 12
8 /
9 STO D
10 SGN
11 ENTER
12 x≠0?
13 GTO M
14 1
15 +
1 LBL M
2 STO F
3 ENTER
1 LBL N
2 STO J
3 R↓
4 R↓
5 x<> J
6 R↑
7 R↑
8 x<> J
9 RCL* D
10 RCL F
11 STO J
12 R↓
13 RCL/ J
14 R↑
15 1
16 +
17 STO F
18 /
19 STO J
20 R↓
21 RCL+ J
22 R↓
23 x<> J
24 R↑
25 R↑
26 x<> J
27 x≠y?
28 GTO N
29 π
30 RCL/ C
31 x^2
32 *
33 2
34 STO+ C
35 6
36 *
37 /
38 x<>y
39 R↓
40 ENTER
1 LBL Z
2 RCL* E
3 RCL+ B
4 STO B
5 x<>y
6 RCL+ B
7 RND
8 x<>y
9 RND
10 x≠y?
11 GTO O
12 ALL
13 RTN