This program is Copyright © 2006 by Jean-Marc Baillard and is used here by permission.
This program is supplied without representation or warranty of any kind. Jean-Marc Baillard and The Museum of HP Calculators therefore assume no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.
Overview
1°) Standard Atmosphere
a) Apparent Altitude >>> True Altitude
b) Other Simple Formulae
c) True Altitude >>> Apparent Altitude
2°) More general Programs
a) A short routine
b) A middle program
c) A long program
-The light coming from a star is curved by the atmosphere, so that its
apparent altitude differs from its true altitude.
-The refraction R allows to convert the apparent altitude h0
and the true altitude h of a given star: h = h0
- R
-The following programs use data from the Pulkovo Refraction Tables.
1°) Standard Atmosphere(s)
a) Apparent Altitude >>> True
Altitude
-The short routine hereafter gives relatively accurate results in the following atmospheric conditions:
Temperature:
+15°Celsius
Pressure:
1013.25 mbar
Light wave-length:
0.590 µm
Partial pressure of water vapor:
0 ( dry air )
Latitude:
45°
Observer's altitude:
0 ( i-e at sea-level )
Formula: R ~ (1°/62.83)/Tan( h0 + 4.208/( h0 + 14.978/( h0 + 5.906 ) ) ) where h0 is expressed in degrees
-Errors are smaller than 0"34 over the whole range [ 0°
, 90° ]
01 LBL "H0-H"
02 DEG
03 HR
04 14.978
05 RCL Y
06 5.906
07 +
08 /
09 +
10 4.208
11 X<>Y
12 /
13 +
14 TAN
15 1/X
16 62.83
17 /
18 X<0?
19 CLX
20 ST- Y
21 HMS
22 X<>Y
23 HMS
24 END
( 52 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Z | / | h0 |
Y | / | R |
X | h0 | h |
-All angles expressed in ° ' " ( but Z-output in degrees and decimals )
Examples: With h0 = 1°30'00" ; h0 = 27° ; h0 = 0
1.30 XEQ "H0-H" >>>> h =
1°09'42"6 RDN R = 0°20'17"4
27 R/S
>>>> h = 26°58'08"3 RDN
R = 0°01'51"7
0
R/S >>>>
h = -0°32'58"0 RDN R = 0°32'58"0
-For the horizontal refraction, "H0-H" yields 1977"977
-According to Pulkovo refraction tables, it should be 1977"971
-A more accurate formula is:
R ~ (1°/62.97411)/Tan( h0 + 3.86653/( h0 + 6.24727/( h0 + 8.56113/( h0 + 22.89592/( h0 + 7.15359 ) ) ) ) )
-Errors are smaller than 0"06 over the whole range [ 0° , 90° ]
-Laplace formula R = 57".085/Tan h0 - 0".0666/Tan3 h0 gives even better results if h0 > 20° , more precisely:
errors are smaller than 0"02
for h0 > 20°
---------------------- 0"01
for h0 > 23°
---------------------- 0"002
for h0 > 30°
b) Other Simple Formulae
-We can build similar formulae for other atmospheric conditions.
R ~ a/Tan( h0 + b/( h0 + c/( h0 + d ) ) ) where h0 is expressed in degrees
-For a dry air, light wave-length = 0.59 µm , latitude
= 45° at sea-level, we find:
t (°C) | P (mbar) | a | b | c | d | E | error(0) |
-30 | 1013.25 | 67"8716 | 3.3124 | 13.2157 | 4.9474 | 0"20 | -80"0 |
-10 | 1013.25 | 62"720 | 3.713 | 14.049 | 5.389 | 0"28 | -33"6 |
+10 | 1013.25 | 58"292 | 4.093 | 14.561 | 5.730 | 0"30 | -4"9 |
+30 | 1013.25 | 54"451 | 4.469 | 15.077 | 6.089 | 0"32 | +14"4 |
15 | 500 | 28"265 | 4.438 | 15.125 | 5.892 | 0"17 | 0"17 |
15 | 700 | 39"576 | 4.350 | 15.088 | 5.904 | 0"23 | 0"09 |
15 | 900 | 50"885 | 4.253 | 14.937 | 5.881 | 0"29 | 0"23 |
15 | 1100 | 62"187 | 4.145 | 14.609 | 5.801 | 0"32 | 0"02 |
- E is the maximum error ( in absolute value ) over the interval
[ 0°10' ; 90° ]
- error(0) is the error at the horizon ( compared with the Pulkovo
tables )
-As you can see, error(0) is much greater than E when t < 15°C
or t > 15°C , especially for very low temperatures,
and I don't really know the behavior of the function R(h0)
for 0° < h0 < 0°10' if t # 15°C
c) True Altitude >>> Apparent
Altitude
-We now assume t = 15°C & P = 1013.25 mbar again with the other standard parameters above.
Formula: R ~ (1°/62.6)/Tan( h + 5.459/( h + 19.272/( h + 6.942 ) ) ) where h is expressed in degrees
-Errors are smaller than 0"8 over the whole range [ -0°32'58"
, 90° ]
01 LBL "H-H0"
02 DEG
03 HR
04 19.272
05 RCL Y
06 6.942
07 +
08 /
09 +
10 5.459
11 X<>Y
12 /
13 +
14 TAN
15 1/X
16 62.6
17 /
18 X<0?
19 CLX
20 ST+ Y
21 HMS
22 X<>Y
23 HMS
24 END
( 51 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Z | / | h |
Y | / | R |
X | h | h0 |
-All angles expressed in ° ' " ( but Z-output in degrees and decimals )
Example: With h = 1°30'00"
1.30 XEQ "H-H0" >>>> h0 =
1°48'38"6 RDN R = 0°18'38"6
2°) More General Programs
a) A Short Routine
-We still assume a dry air, light wave-length = 0.59 µm
, latitude = 45° , altitude = 0
but now, the temperature t may be different from 15°C and
the pressure P may be different from 1013.25 mbar.
Formula: R ~ (P/1013.25).(288.15/(t+273.15)).(1°/62.83)/Tan(
h0 + 4.208/( h0 + 14.978/( h0
+ 5.906 ) ) ) where h0
is expressed in degrees
Data Registers: R00 = unused
( Registers R01 & R02 are to be initialized before executing
"REF" )
• R01 = t ( in °C )
• R02 = P ( in mbar )
Flags: /
Subroutines: /
01 LBL "REF"
02 DEG
03 HR
04 14.978
05 RCL Y
06 5.906
07 +
08 /
09 +
10 4.208
11 X<>Y
12 /
13 +
14 TAN
15 1/X
16 220.935
17 /
18 RCL 01
19 273.15
20 +
21 /
22 RCL 02
23 *
24 X<0?
25 CLX
26 ST- Y
27 HMS
28 X<>Y
29 HMS
30 END
( 64 bytes / SIZE 003 )
STACK | INPUTS | OUTPUTS |
Y | / | R |
X | h0 | h |
-All angles expressed in ° ' "
Example: t = -10°C , P = 1100 mbar -10 STO 01 1100 STO 02
-If h0 = 12°34'56"
12.3456 XEQ "REF" >>>> h = 12°29'59"
X<>Y R = 0°04'57"
-If h0 = 10°12'34"
10.1234 R/S
>>>> h = 10°06'30" X<>Y R =
0°06'04"
-The results are acceptable for h0 > 10°
( errors are of the order of 1 or 2 arcseconds for h0 = 10°
)
-For heights of a few degrees, the outputs are much more doubtful.
b) A Middle Program
-We suppose a light wave-length = 0.59 µm , latitude =
45° , altitude = 0
but the temperature t , the pressure P and the humidity f may
have non-standard values.
-To make a little change, P & f are expressed in mmHg
( 760 mmHg = 1013.25 mbar )
Formulae: The standard refraction is computed by R0 ~ (1°/62.83)/Tan( h0 + 4.208/( h0 + 14.978/( h0 + 5.906 ) ) )
then, coefficents A , B , D ( defined in the next paragraph ) are calculated by:
A ~ (1/307.5).[(15-t) + (15-t)2/271].[
exp(-0.81 h00.957) + exp(-0.846
h00.566) ]
B ~ (1/6) 10 -7 [ 3480 (p-760) + (p-760)2
].[ exp(-0.384 h00.763) + exp(-0.541
h01.123) ]
D ~ (1/759) 10 -4 ( f 3 - 190.f
2 -1852.f ) exp(-0.928 h00.652)
Data Registers: R00 = h0
( Registers R01 thru R03 are to be initialized before executing "REF2"
)
• R01 = t ( in °C )
( -10 <= t <= +30 )
• R02 = P ( in mmHg ) (
525 <= P <= 825 )
• R03 = f ( in mmHg )
( 0 <= f <= 15 )
Flags: /
Subroutines: /
01 LBL "REF2"
02 DEG
03 HR
04 STO 00
05 14.978
06 RCL 00
07 5.906
08 +
09 /
10 +
11 4.208
12 X<>Y
13 /
14 +
15 TAN
16 RCL 02
17 166.566
18 /
19 X<>Y
20 /
21 271.677
22 RCL 01
23 +
24 /
25 RCL 03
26 4935
27 /
28 RCL 03
29 320
30 /
31 X^2
32 +
33 *
34 -
35 RCL 00
36 .957
37 Y^X
38 .81
39 *
40 CHS
41 E^X
42 RCL 00
43 .566
44 Y^X
45 .846
46 *
47 CHS
48 E^X
49 +
50 15
51 RCL 01
52 -
53 X^2
54 271
55 ST/ Y
56 X<> L
57 +
58 307.5
59 /
60 *
61 *
62 +
63 RCL 00
64 .763
65 Y^X
66 .384
67 *
68 CHS
69 E^X
70 RCL 00
71 1.123
72 Y^X
73 .541
74 *
75 CHS
76 E^X
77 +
78 RCL 02
79 760
80 -
81 X^2
82 3480
83 ST* L
84 X<> L
85 +
86 *
87 6 E7
88 /
89 *
90 +
91 RCL 03
92 190
93 -
94 RCL 03
95 *
96 1852
97 -
98 RCL 03
99 *
100 759 E4
101 /
102 RCL 00
103 .652
104 Y^X
105 .928
106 *
107 E^X
108 /
109 *
110 +
111 RCL 00
112 X<>Y
113 X<0?
114 CLX
115 ST- Y
116 HMS
117 X<>Y
118 HMS
119 END
( 216 bytes / SIZE 004 )
STACK | INPUTS | OUTPUTS |
Y | / | R |
X | h0 | h |
( All angles expressed in ° ' " ) Execution time = 11 seconds.
Example: t = 5°C ; P = 800 mmHg ; f = 6 mmHg
5 STO 01 800 STO 02 6 STO 03
-If h0 = 0°
0 XEQ "REF2" >>>> h = -0°38'25"
X<>Y R = 0°38'25"
-If h0 = 10°23'45"
10.2345 R/S
>>>> h = 10°18'16"4 X<>Y R =
0°05'28"6
-If h0 = 49°12'34"
49.1234 R/S
>>>> h = 49°11'40"3 X<>Y R =
0°00'53"7
-If h0 > 20° more accurate results will be obtained
if R0 is computed by Laplace's formula.
-The accuracy is of the order of 10" near the horizon, but errors rapidly
decrease as h0 increases.
-However, disturbances of the atmosphere make accurate results more
theoretical than real for very small h0-values:
near the horizon, the refraction may fluctuate by several arcminutes!
-Nevertheless, the following program tries to produce the accurate values
of the Pulkovo refraction tables,
and the other parameters are now taken into account:
c) A Long Program
-This program uses the following formula to compute the atmospheric refraction in a standard atmosphere:
R0 ~ (1°/62.97411)/Tan( h0 + 3.86653/( h0 + 6.24727/( h0 + 8.56113/( h0 + 22.89592/( h0 + 7.15359 ) ) ) ) )
-Then, refraction R in more general conditions is calculated by:
R = R0 (1.0552126/(1+0.00368084.t)).(1+A).(P/1013.25).(1+B).(0.98282+0.005981/Lwl2).(1+C).(1-0.152 10 -3 f -0.55 10 -5 f 2 ).(1+D).(1+E).(1+F)
where t = temperature (°C) ; P = pressure
(mbar) ; f = partial pressure of water vapor (mbar)
Lwl = Light wave-length ( µm ) ; lat = latitude
alt = observer's altitude ( over sea-level ) in meters.
- A , B , C , D , E , F are coefficients which depend on the temperature, pressure, Light wave-length, humidity, latitude and observer's altitude respectively.
-They are very small near the zenith, but they can't be neglected near
the horizon!
-Reference [1] provides tables for these coefficients, but "REFR" uses
approximate
formulae instead:
-Lagange's interpolation formula is used to obtain A and B for other t- and P-values.
Coefficient A: With x = 1/(1+h0)
-If t = -30°C 105A = Max ( -2
- 1411 x + 100967 x2 + 3583 x3 - 465432 x4
+ 928890 x5 - 783471 x6 + 251549 x7 +
2377 e -43.h0 ; 0 )
-If t = -10°C 105A = Max (
-880 x + 57082 x2 - 6928 x3 - 250807 x4
+ 515833 x5 - 438687 x6 + 141374 x7 +
976 e -41.h0 ; 0 )
-If t = +10°C 105A = Max (
-175 x + 11332 x2 - 1318 x3 - 54120 x4
+ 112625 x5 - 96545 x6 + 31284 x7 + 147
e
-30.h0 ; 0 )
-If t = +15°C
A = 0
-If t = +30°C 105A = Min (
-1 + 589 x - 34750 x2 + 9753 x3 + 154745 x4
- 335229 x5 + 291742 x6 - 95395 x7 - 284
e -37.h0 ; 0 )
-The exponential terms on the right are quite arbitrary and the results
are uncertain for 0° < h0 < 0°10' ( though correct
for h0 = 0° and 0°10' )
-The coefficient A increases more rapidly ( for t < 15°C ) or
less rapidly ( for t > 15°C ) near the horizon,
and I don't really know the behavior of the function A(h0)
in this interval.
-Though slightly less accurate, the following formulae may also be
used:
-If t = -30°C 105A = Max ( -15
- 387 x + 82156 x2 + 142877 x3 - 963927 x4
+ 1845007 x5 - 1614635 x6 + 545974 x7
; 0 )
-If t = -10°C 105A = Max (
-5 - 466 x + 49149 x2 + 49994 x3 - 454890 x4
+ 891332 x5 - 779644 x6 + 262223 x7 ;
0 )
-If t = +10°C 105A = Max (
-1 - 113 x + 10184 x2 + 7212 x3 - 84702 x4
+ 168894 x5 - 147638 x6 + 49394 x7 ; 0
)
-If t = +15°C
A = 0
-If t = +30°C 105A = Min (
+1 + 469 x - 32520 x2 - 6816 x3 + 214150 x4
- 444530 x5 + 390988 x6 - 130572 x7 ;
0 )
Coefficient B:
-If P = 500 mbar
105B = -27 + 909 x - 42020 x2 + 102902 x3
- 101640 x4 + 16348 x5 + 39269 x6 - 19816
x7
-If P = 700 mbar
105B = -16 + 506 x - 24962 x2 + 58265 x3
- 49889 x4 - 6869 x5 + 35957 x6 - 15541
x7
-If P = 900 mbar
105B = -7 + 229 x - 9556 x2 + 23689 x3
- 25749 x4 + 9819 x5 + 3176 x6 - 2541
x7
-If P = 1013.25 mbar
B = 0
-If P = 1100 mbar
105B = 4 - 153 x + 7206 x2 - 18115 x3
+ 21595 x4 - 12458 x5 + 2134 x6 + 572
x7
Coefficient C:
105C = [ 473 ( 0.59-Lwl ) + 1570 ( 0.59-Lwl )2 + 2911 ( 0.59-Lwl )3 ] exp ( -0.472 h00.866 )
Coefficient D:
105D = ( -14.6 f + 2.556 f 2 - 0.12445 f 3 + f 4/214 - f 5/16540 )/( 1 + 1.057 h0 + 0.29 h02 + h03/80 )
Coefficient E:
E = ( -1/260 ) Cos ( 2.Lat ) exp ( -0.467 h00.8215 )
Coefficient F:
F = [ exp ( - alt/18031 ) - 1 ] exp ( -1.106 h00.805 )
-All these formulae may certainly be improved.
-They are empirical and I 've found many of them with my HP-48 and
Sune Bredahl's excellent "SOLVESYS" library ( cf http://www.hpcalc.org
)
Data Registers: R00 = h0
( Registers R01 thru R06 are to be initialized before executing "REFR"
)
• R01 = t ( in °C )
( -30 <= t <= +30 )
• R02 = P ( in mbar ) (
500 <= P <= 1100 )
These limits are not absolute...
• R03 = f ( in mbar )
( 0 <= f <= 30 )
• R04 = Lwl ( in µm )
( 0.4 <= lwl <= 0.7 )
R08 thru R24: temp
• R05 = lat ( in °. ' " )
• R06 = alt ( in meters ) ( 0 <= alt <=
1000 )
When the program stops, R07 = Refraction ( in degrees and decimals )
with t = temperature ; P
= pressure ; f = partial pressure of water vapor
Lwl = Light wave-length ; lat = latitude
alt = observer's altitude ( over sea-level )
Flags: /
Subroutine: "LAGR" ( cf "Lagrange
Interpolation formula for the HP-41" )
01 LBL "REFR"
02 DEG
03 HR
04 STO 00
If you want to take advantage of Laplace's formula, replace
lines 27-28 by LBL 02
05 22.89592
and add the following instructions after line 04:
06 RCL Y
07 7.15359
21
X<>Y ENTER^
*
1/X GTO 02
08 +
X>Y? TAN
X^2
CHS +
LBL 01
09 /
GTO 01 1/X
185 E-7 63.064
*
CLX
10 +
11 8.56113
12 X<>Y
13 /
14 +
15 6.24727
16 X<>Y
17 /
18 +
19 3.86653
20 X<>Y
21 /
22 +
23 TAN
24 1/X
25 62.97411
26 /
27 X<0?
28 CLST
29 RCL 02
30 *
31 960.233
32 /
33 RCL 01
34 271.677
35 /
36 1
37 +
38 /
39 1
40 RCL 03
41 18 E4
42 /
43 6579
44 1/X
45 +
46 RCL 03
47 *
48 -
49 *
50 5
51 RCL 04
52 X^2
53 836
54 *
55 /
56 .98282
57 +
58 *
59 STO 07
60 10
61 STO 19
62 CHS
63 STO 17
64 15
65 STO 21
66 ST+ X
67 STO 23
68 CHS
69 STO 15
70 CLX
71 STO 22
72 SIGN
73 RCL 00
74 +
75 1/X
76 STO 14
77 2
If you want to use the second formulae to calculate A, replace lines 77
to 102 by
78 STO 08
79 1411
15
82156
CHS
CHS
80 CHS
STO 08 STO 10
STO 12
545974
81 STO 09
387
142877 1845007
XEQ 01
82 100967
CHS
STO 11 STO 13
83 STO 10
STO 09 963927
1614635
84 3583
85 STO 11
86 465432
87 CHS
88 STO 12
89 928890
90 STO 13
91 783471
92 CHS
93 251549
94 XEQ 01
95 2377
96 RCL 00
97 43
98 *
99 CHS
100 E^X
101 *
102 +
103 X<0?
104 CLX
105 STO 16
106 CLX
If you want to use the second formulae to calculate A, replace lines 106
to 132 by
107 STO 08
108 880
5
49419 454890
779644
109 CHS
STO 08 STO
10 CHS
CHS
110 STO 09
466
575
STO 12
262223
111 57082
CHS
+
891332
XEQ 01
112 STO 10
STO 09 STO
11 STO 13
113 6928
114 CHS
115 STO 11
116 250807
117 CHS
118 STO 12
119 515833
120 STO 13
121 438687
122 CHS
123 141374
124 XEQ 01
125 976
126 RCL 00
127 41
128 *
129 CHS
130 E^X
131 *
132 +
133 X<0?
134 CLX
135 STO 18
136 175
If you want to use the second formulae to calculate A, replace lines 136
to 160 by
137 CHS
138 STO 09
1
10184
CHS
CHS
139 11332
STO 08 STO 10
STO 12
49394
140 STO 10
113
7212
168894
XEQ 01
141 1318
CHS
STO 11 STO 13
142 CHS
STO 09 84702
147638
143 STO 11
144 54120
145 CHS
146 STO 12
147 112625
148 STO 13
149 96545
150 CHS
151 31284
152 XEQ 01
153 147
154 RCL 00
155 30
156 *
157 CHS
158 E^X
159 *
160 +
161 X<0?
162 CLX
163 STO 20
164 1
If you want to use the second formulae to calculate A, replace lines 164
to 189 by
165 STO 08
166 589
1
32520
STO 11 STO 13
167 STO 09
CHS
CHS
214150 390988
168 34750
STO 08
STO 10
STO 12 130572
169 CHS
469
6816
444530 CHS
170 STO 10
STO 09
CHS
CHS
XEQ 01
171 9753
172 STO 11
173 154745
174 STO 12
175 335229
176 CHS
177 STO 13
178 291742
179 95395
180 CHS
181 XEQ 01
182 284
183 RCL 00
184 37
185 *
186 CHS
187 E^X
188 *
189 -
190 X>0?
191 CLX
192 STO 24
193 RCL 01
194 XEQ 02
195 500
196 STO 15
197 700
198 STO 17
199 90
200 ST* 19
201 67.55
202 ST* 21
203 1100
204 STO 23
205 27
206 STO 08
207 909
208 STO 09
209 42020
210 CHS
211 STO 10
212 102902
213 STO 11
214 101640
215 CHS
216 STO 12
217 16348
218 STO 13
219 39269
220 19816
221 CHS
222 XEQ 01
223 STO 16
224 16
225 STO 08
226 506
227 STO 09
228 24962
229 CHS
230 STO 10
231 58265
232 STO 11
233 49889
234 CHS
235 STO 12
236 6869
237 CHS
238 STO 13
239 35957
240 15541
241 CHS
242 XEQ 01
243 STO 18
244 7
245 STO 08
246 229
247 STO 09
248 9556
249 CHS
250 STO 10
251 23689
252 STO 11
253 25749
254 CHS
255 STO 12
256 9819
257 STO 13
258 3176
259 2541
260 CHS
261 XEQ 01
262 STO 20
263 4
264 CHS
265 STO 08
266 153
267 CHS
268 STO 09
269 7206
270 STO 10
271 18115
272 CHS
273 STO 11
274 21595
275 STO 12
276 12458
277 CHS
278 STO 13
279 2134
280 572
281 XEQ 01
282 STO 24
283 RCL 02
284 XEQ 02
285 RCL 03
286 RCL 03
287 RCL 03
288 16540
289 /
290 214
291 1/X
292 -
293 *
294 .12445
295 +
296 *
297 2.556
298 -
299 *
300 14.6
301 -
302 *
303 RCL 00
304 80
305 /
306 .29
307 +
308 RCL 00
309 *
310 1.057
311 +
312 RCL 00
313 *
314 1
315 +
316 /
317 XEQ 03
318 .59
319 RCL 04
320 -
321 1570
322 RCL Y
323 2911
324 *
325 +
326 *
327 473
328 +
329 *
330 RCL 00
331 .866
332 Y^X
333 .472
334 *
335 E^X
336 /
337 XEQ 03
338 GTO 04
339 LBL 01
340 RCL 14
341 STO T
342 *
343 +
344 *
345 RCL 13
346 +
347 *
348 RCL 12
349 +
350 *
351 RCL 11
352 +
353 *
354 RCL 10
355 +
356 *
357 RCL 09
358 +
359 *
360 RCL 08
361 -
362 RTN
363 LBL 02
364 15.024
365 X<>Y
366 XEQ "LAGR"
367 LBL 03
368 E5
369 ST+ Y
370 /
371 ST* 07
372 RTN
373 LBL 04
374 1
375 RCL 05
376 HR
377 ST+ X
378 COS
379 260
380 /
381 RCL 00
382 .8215
383 Y^X
384 .467
385 *
386 E^X
387 /
388 -
389 ST* 07
390 RCL 06
391 18031
392 /
393 CHS
394 E^X-1
395 RCL 00
396 .805
397 Y^X
398 1.106
399 *
400 E^X
401 /
402 1
403 +
404 ST* 07
405 RCL 00
406 RCL 07
407 ST- Y
408 HMS
409 X<>Y
410 HMS
411 END
( 852 bytes / SIZE 025 )
STACK | INPUTS | OUTPUTS |
Y | / | R |
X | h0 | h |
( All angles expressed in ° ' " ) Execution time = 64 seconds.
Example: With t = 20°C , P = 1000 mbar , f = 12 mbar , Lwl = 0.5 µm , lat = 30° , alt = 500 m ( store these 6 numbers into R01 thru R06 )
h0 = 0
XEQ "REFR" >>>> h = -0°30'04"100
X<>Y R = 0°30'04"100 =
1804"100
h0 = 1°
R/S >>>>
h = 0°37'43"380 X<>Y
R = 0°22'16"620 = 1336"620
h0 = 12°34'56"
R/S >>>>
h = 12°30'52"615 X<>Y
R = 0°04'03"385 = 243"385
h0 = 41°16'24"
R/S >>>>
h = 41°15'20"772 X<>Y
R = 0°01'03"228 = 63"228
-The accuracy is of the order of 1 or 2 arcseconds near the horizon
( with a greater uncertainty for 0° < h0 < 0°10'
). Interpolation may also decrease the precision.
- errors ~ 0"5 for h0 = 5°
- errors ~ 0"2 for h0 = 10°
-For h0 > 20° the accuracy is determined by the formula
which computes R0 , therefore use Laplace's formula
as explained on the right of the beginning of this listing if
you need more accurate results for these h0-values.
-As mentioned above, the accurate results near the horizon are often
unrealistic without knowing the detailed structure of low atmosphere.
( cf references [3] & [9] for a detailed analysis on low-altitude
refraction )
References:
[1] Jean Kovalevsky et al. - "Introduction aux Ephemerides
Astronomiques" - EDP Sciences - ISBN 2-86883-298-9 ( in French )
[2] Abalakin 1985 - "Refraction Tables of Pulkovo Observatory"
5th edition - Nauka, Leningrad
[3] Andrew T. Young - "Sunset Science IV. Low-Altitude
Refraction" - 2004, the Astronomical Journal, 127 , 3622
[4] Lawrence H. Auer & E. Myles Standish - "Astronomical
Refraction, Computational method for all zenith angles" 2000 AJ, 119 ,
2472
[5] Krystyna Kurzynska - "Precision in determination of
astronomical refraction from aerological data" - 1987, Astron. Nachr. 308,
323
[6] Krystyna Kurzunska - "Local effects in pure astronomical
refraction" - 1988, Astron. Nachr. 309, 57
[7] Krystyna Kurzynska - "On the accuracy of the Refraction
Tables of Pulkovo Observatory, 5th edition" 1988, Astron. Nachr. 309, 213
[8] Minodora Lipcanu - "A direct method for the calculation
of astronomical refraction"
[9] Andrew T. Young - "Understanding Astronomical Refraction"
- 2006, The Observatory, Vol. 126, N° 1191, pp. 82-115
Go back to the HP-41 software library
Go back to the general software library
Go
back to the main exhibit hall