The Museum of HP Calculators


Dawson's Integral for the HP-41

This program is Copyright © 2006 by Jean-Marc Baillard and is used here by permission.

This program is supplied without representation or warranty of any kind. Jean-Marc Baillard and The Museum of HP Calculators therefore assume no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.


Overview

-This program computes   F(x) = e -x^2 §0x  et^2 dt     by a series expansion.
   F(x) = e -x^2 [ x + x3/3 + x5/(5 2!) + x7/(7 3!) + ..... ]
 

Program Listing
 

Data Registers: /
Flags: /
Subroutines: /
 

01  LBL "DAW"
02  STO M
03  X^2
04  STO N
05  1
06  LASTX
07  ENTER^
08  LBL 01
09  CLX
10  RCL M
11  RCL N
12  *
13  R^
14  ISG T
15  CLX
16  /
17  STO M
18  R^
19  ST+ X
20  DSE X
21  /
22  X<>Y
23  ST+ Y
24  X#Y?
25  GTO 01
26  RCL N
27  E^X
28  /
29  CLA
30  END

( 49 bytes / SIZE 000 )
 
 
 
      STACK        INPUTS      OUTPUTS
           X             x          F(x)
           L             /           e x^2

Examples:

     1.94  XEQ "DAW"  >>>>  F( 1.94 ) =  0.3140571659     ( 11 seconds )
      10         R/S            >>>>    F(10)    =  0.05025384716   ( 85 seconds )
      15         R/S            >>>>    F(15)    =  0.03340790676     ( 2mn46s )

-For x > 15 , there will be an OUT OF RANGE.
 

Reference:   Abramowitz and Stegun , "Handbook of Mathematical Functions" -  Dover Publications -  ISBN  0-486-61272-4
 

Go back to the HP-41 software library
Go back to the general software library
Go back to the main exhibit hall