This program is Copyright © 2006 by Jean-Marc Baillard and is used here by permission.
This program is supplied without representation or warranty of any kind. Jean-Marc Baillard and The Museum of HP Calculators therefore assume no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.
Overview
-The following program computes db(x;n) = §x+infinity tn/(et-1).dt where n is a positive integer and x > 0
Formula: db(x;n) = Sum k>0
e-k.x [ xn/k + n.xn-1/k2 +
..... + n!/kn+1 ]
Program Listing
Data Registers: /
Flags: /
Subroutines: /
01 LBL "DEBYE"
02 CLA
03 STO M
04 X<>Y
05 STO N
06 CLST
07 LBL 01
08 R^
09 1
10 +
11 RCL M
12 RCL N
13 STO P
( synthetic )
14 Y^X
15 RCL Y
16 /
17 ENTER^
18 LBL 02
19 RCL P
20 *
21 R^
22 /
23 RCL M
24 /
25 ST+ Y
26 DSE P
27 GTO 02
28 X<> T
29 RCL M
30 *
31 E^X
32 /
33 RCL O
34 +
35 STO O
36 LASTX
37 X#Y?
38 GTO 01
39 RCL M
40 SIGN
41 X<> N
42 X<>Y
43 CLA
44 END
( 72 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Y | n | n |
X | x | db(x,n) |
L | / | x |
n = a positive integer ; x > 0
Example:
3 ENTER^
0.7 XEQ "DEBYE" >>>> db( 0.7
; 3 ) = 6.406833597 ( 55 seconds )
Note: We also have db(0;n) = §0+infinity
tn/(et-1).dt = n! Zeta(n+1)
where "Zeta" is the Riemann Zeta Function.
Reference:
Abramowitz and Stegun , "Handbook of Mathematical Functions" - Dover
Publications - ISBN 0-486-61272-4
Go back to the HP-41 software library
Go back to the general software library
Go
back to the main exhibit hall