This program is Copyright © 2004 by Jean-Marc Baillard and is used here by permission.
This program is supplied without representation or warranty of any kind. Jean-Marc Baillard and The Museum of HP Calculators therefore assume no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.
-Three programs are listed below:
1°) a) "EULN1" calculates the Euler numbers E(n) by
a series expansion
b) "EULN2" uses a
recurrence relation to produce E'(0) , E'(1) , ..... , E'(n)
2°) "EULN3" computes the Eulerian
numbers A(n;k)
1°) The Euler Numbers
a) A Series Expansion
-These integers may be computed by the formula:
E(n) = (-1)n/2 2n+2 n!
pi -n-1 ( 1/1n+1 - 1/3n+1 + 1/5n+1
- ..... + (-1)k / (2k+1)n+1 + ..... )
if n is even
E(n) = 0 if n is odd
-"EULN1" gives E(n) directly if n < 7 or n odd.
-The series expansion is used for n > 7 ; n even.
-The first values are:
n | 0 | 2 | 4 | 6 | 8 | 10 |
E(n) | 1 | -1 | 5 | -61 | 1385 | -50521 |
Data Registers: R00 = n ; R01 to R02:
temp
Flag: /
Subroutine: /
01 LBL "EULN1"
02 STO 00
03 1
04 X>Y?
05 RTN
06 ST+ X
07 MOD
08 0
09 X#Y?
10 RTN
11 LASTX
12 RCL 00
13 X#Y?
14 GTO 00
15 1
16 CHS
17 RTN
18 LBL 00
19 5
20 X>Y?
21 RTN
22 CLX
23 6
24 X#Y?
25 GTO 00
26 61
27 CHS
28 RTN
29 LBL 00
30 SIGN
31 STO Z
32 STO 01
33 +
34 CHS
35 STO 02
36 LBL 01
37 CLX
38 2
39 RCL 01
40 +
41 STO 01
42 RCL 02
43 Y^X
44 X<>Y
45 CHS
46 ST+ Y
47 X#Y?
48 GTO 01
49 ABS
50 ST+ X
51 2
52 PI
53 /
54 E-10
55 +
56 RCL 02
57 CHS
58 STO 02
59 Y^X
60 *
61 2
62 RCL 02
63 4
64 MOD
65 -
66 *
67 DSE 02
68 LBL 02
69 RCL 02
70 *
71 DSE 02
72 GTO 02
73 END
( 97 bytes / SIZE 003 )
STACK | INPUTS | OUTPUTS |
X | n | E(n) |
Example: -Find E(78)
78 XEQ "EULN1" yields E(78)
= -7.270601736 1099 ( in 15seconds
)
b) A Recurrence Relation
-Some authors define these numbers by the relations:
E'(0) = 1 ; E'(1) = -1 and -E'(n) - 1 = C2n2 E'(n-1) + C2n4 E'(n-2) + ..... + C2n2n-2 E'(1) if n > 1 ( actually, E'(n) = E(2n) )
where Cnk = n!/(k!(n-k)!) are the binomial coefficients.
-"EULN2" uses this recurrence relation to calculate and store E'(0)
; E'(1) ; ..... ; E'(n) in registers R00 ; R01 ; ..... ; Rnn
-The first values are:
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
E'(n) | 1 | -1 | 5 | -61 | 1385 | -50521 | 2702765 | -199360981 |
Data Registers: R00 = E'(0) ; R01 =
E'(1) ; ....... ; Rnn = E'(n)
Flag: /
Subroutine: /
-Synthetic registers M , N , O may be replaced by any unused data registers.
01 LBL "EULN2"
02 STO O
03 SIGN
04 STO 00
05 STO N
06 CHS
07 STO 01
08 CHS
09 LBL 01
10 RCL 00
11 STO M
12 ST+ N
13 CHS
14 LBL 02
15 RCL Y
16 RCL 00
17 +
18 ST* M
19 ST+ X
20 LASTX
21 -
22 ST* M
23 CLX
24 RCL N
25 R^
26 -
27 ST/ M
28 ST+ X
29 RCL 01
30 +
31 ST/ M
32 CLX
33 RCL IND Z
34 RCL M
35 *
36 -
37 DSE Y
38 GTO 02
39 STO IND N
40 RCL O
41 RCL N
42 X<Y?
43 GTO 01
44 X<>Y
45 SIGN
46 RCL IND L
47 CLA
48 END
( 79 bytes / SIZE nnn+1 but at least 003 )
STACK | INPUTS | OUTPUTS |
X | n | E(n) |
L | / | n |
Example: -Evaluate: E'(10) = E(20)
10 XEQ "EULN2" >>> 3.703711883
1014 ( in 36 seconds ) and E'(0) , E'(1) ,
..... E'(10) in registers R00 , R01 , ...... , R10.
2°) The Eulerian Numbers A(n;k)
-The integers A(n;k) are computed by: A(n;k) =
Cn+10 kn - Cn+11
(k-1)n + Cn+12 (k-2)n
- .......... + (-1)k Cn+1k
(k-k)n ( 0 < k < n+1 )
-The first values are:
1
1 1
1 4
1
1 11 11
1
1 26 66
26 1
1 57 302
302 57 1
.....................................
-Note that some authors define these numbers differently ( with k+1 instead of k )
Data Registers: /
Flags: /
Subroutines: /
01 LBL "EULN3"
02 CLA
03 STO O
04 SIGN
05 STO M
06 CLX
07 ENTER^
08 LBL 01
09 X<> L
10 RCL N
11 -
12 R^
13 Y^X
14 RCL M
15 *
16 +
17 RCL N
18 R^
19 -
20 1
21 ST+ N
22 -
23 ST* M
24 CLX
25 RCL N
26 ST/ M
27 RCL O
28 -
29 X<= 0?
30 GTO 01
31 RDN
32 CLA
33 END
( 55 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Y | n | n |
X | k | A(n;k) |
L | / | k |
Example: -Calculate A(16;7)
16 ENTER^
7 XEQ "EULN3" >>>
A(16;7) = 3.207483180 1012 ( in 8 seconds
)
Reference: "The Book of Numbers" by John H. Conway & Richard K. Guy
Go back to the HP-41 software library
Go back to the general software library
Go
back to the main exhibit hall