This program is Copyright © 2005 by Jean-Marc Baillard and is used here by permission.
This program is supplied without representation or warranty of any kind. Jean-Marc Baillard and The Museum of HP Calculators therefore assume no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.
Overview
1°) The Classical Tests
a) Advance of Periastron
b) Light Deflection
c) Gravitational Red-shift
2°) Gravitational Radiation on circular orbits
3°) Cosmology
a) Friedmann Universes: Cosmological Constant = 0
a-1) Einstein-de Sitter model
q0 = 1/2 ( q = deceleration parameter
)
a-2) Spherical models q0
> 1/2
a-3) Hyperbolic models 0 <
q0 < 1/2
b) Empty Universes: L0 + q0 = 0
b-1) Milne model q0
= 0
b-2) de Sitter model q0
= -1
b-3) -1 < q0 < 0
b-4) q0 > 0
b-5) q0 < -1
c) Eddington-Lemaitre Universes ( critical parameters )
d) Euclidean Universes
d-1) -1 < q0 <
1/2
d-2) q0 >
1/2
e) More general models
e-1) Numerical Integration ( program#1 )
e-2) Numerical Integration ( program#2
)
e-3) Elliptic Integrals ( Big Bang Universes
only )
f) Non-vanishing Pressure ( new )
f-1) Pure Radiation (
new )
f-2) Radiation+Dust: Numerical Integration(
new )
f-3) Radiation+Dust: Elliptic Integrals(
new )
Astronomical Data:
Constant of gravitation = G = 6.67259 10-11 m3
kg-1 s-2
Heliocentric Gravitational Constant = 1.3271244 1020
m3 s-2
Geocentric Gravitational Constant = 3.986004356 1014
m3 s-2
Mass of the Sun = M = 1.98892 1030 kg
Mass of the Earth = m = 5.97370 1024 kg
Solar Radius = 696265 km
Earth Equatorial Radius = 6378137 m
Speed of light = c = 299792458 m/s
Astronomical Unit = 1AU = 149597870.6 km
1 Light-year = 9.4607304726 1015 m
1 Megaparsec = 1 Mpc = 3.085677581 1022 m
Stefan's Constant = a = 7.565656 10 -16 J.m3.K
-1
Temperature of the Cosmic Background = T = 2.736 K
Hubble Constant = H0 ~ 71 km/s/Mpc ~ 2.301 10-18
s
-In the following programs, I've choosen 1/H0 = 13.7
109 years which corresponds to H0 = 71.37169499
km/s/Mpc = 2.312999111 10-18 second
-These decimals are only given to facilitate comparisons: Hubble Constant
is known very inaccurately!
-The mean density of matter is of the order of ( rho )mat
~ 3 10 -28 kg/m3 , perhaps 10 or 100
times more!
( possible dark matter , non-baryonic or exotic matter ... )
-Some of these programs use synthetic registers M , N , O , P , Q
which may of course be replaced by any unused data registers.
-Integrals are denoted §
1°) The Classical Tests
a) Relativistic
Advance of Periastron
-We assume a celestial body of mass M creates a spherically symmetric
gravitational field.
-In this case, the metric has the following expression:
ds2 = (1-2GM/(c2.r)) c2.dt2 - dr2/(1-2GM/(c2.r)) - r2(d(theta)2 + sin2(theta) d(phi)2 ) Schwarzschild metric
( r , theta , phi = spherical coordinates )
-Provided the gravitational field is not too strong, the orbit of a
planet is a slowly rotating ellipse.
-The 3 following short routines use the formulae:
Advance of periastron = 6.PI.GM/(a.c2(1-e2))
radians per revolution
Third Kepler's law:
a3/T2 = GM/(4.PI2)
where M = Mass of the system , T
= orbital period , a = semimajor axis , e = eccentricity.
01 LBL "MTE"
02 X^2
03 SIGN
04 LASTX
05 -
06 .198956
07 X<>Y
08 /
09 RDN
10 ST/ T
11 /
12 X^2
13 3
14 1/X
15 Y^X
16 R^
17 *
18 END
( 33 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Z | M | / |
Y | T | M |
X | e | adv(p) |
where M = Mass ( expressed in Solar Masses
)
T = Orbital Revolution ( in days )
e = eccentricity
and adv(p) = the advance of periastron in degrees per year
Example1: The binary Pulsar PSR J0737-3039 has the following characteristics:
m1 = 1.25 Solar Mass ;
m2 = 1.34 Solar Mass whence M
= m1 + m2 = 2.59
T = 2.45 hours
e = 0.09
2.59 ENTER^
2.45 ENTER^ 24 /
0.09 XEQ "MTE" >>>> adv(p)
= 16.97 deg/year
Example2: For Mercury, M = Mass
of the Sun = 1
T = 87.969 days
e = 0.2056
1
ENTER^
87.969 ENTER^
0.2056 R/S
>>>> 0.00011939 deg/year.
Multiplying this value by 36 E4 it yields: 42.98
arcseconds/century
-The advance of perihelion for Mercury is the first classical test of
general relativity.
-Of course, Newtonian perturbations caused by other planets are to
be added to this relativistic effect.
-This routine assumes the correction is small.
-If M is expressed in kg and T in seconds, replace line
06 with 2.124235 E-13
-Similar programs may be written if we know a , T , e instead
of M , T , e:
01 LBL "ATE"
02 X^2
03 SIGN
04 LASTX
05 -
06 519.464
07 X<>Y
08 /
09 ST* Z
10 CLX
11 3
12 Y^X
13 /
14 *
15 END
( 30 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Z | a | a |
Y | T | a |
X | e | adv(p) |
where a = Semimajor axis ( in Astronomical Units )
If a is expressed in meters and T in seconds,
T = Orbital
Revolution ( in days )
replace line 06 by 1.497084 E-5
e = eccentricity
-And if we know M , a , e:
01 LBL "MAE"
02 X^2
03 SIGN
04 LASTX
05 -
06 93808
07 *
08 RCL Y
09 X^2
10 *
11 ST/ T
12 RDN
13 /
14 SQRT
15 *
16 END
( 30 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Z | M | / |
Y | a | / |
X | e | adv(p) |
where M = Mass ( expressed in Solar Masses )
If M is expressed in kilograms and a in meters
T = Orbital Revolution ( in days )
replace line 06 with 3.039848 E22
e = eccentricity
b) Light Deflection
-If a photon passes at a distance d of a celestial body of mass M,
its trajectory is deflected by an angle LD = 4.GM/(c2d)
radians.
-The (very ) short following routine computes LD in seconds of arc.
01 LBL "LD"
02 /
03 1.7498
04 *
05 END
( 17 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Y | M | / |
X | d | LD(") |
where M is expressed in Solar Masses
and d --------------------
radii.
Example: with M = 1 for the Sun and d = 1 it yields of course 1.75"
-This effect of light deflection was first observed at the Solar eclipse
of 1919.
-If M is expressed in kg and d is expressed in meters, replace line
03 by 6.1255 E-22
-This program is only valid for small deflections.
-Assuming spherical symmetry, the exact differential equation is:
d2u/d(phi)2 + u = 3.GM/c2 u2 where u = 1/r and ( r, phi ) = polar coordinates.
-A "funny" solution is r = Constant = 3.GM/c2 = 1.5
* Schwarzschild radius
-Thus, a photon may have a circular trajectory !
c) Gravitational
Red-Shift
-We suppose the source and the observer are static in a spherically
symmetric gravitational field created by a celestial body of mass M.
-In this case, z = d(lambda)/lambda = ((1-2GM/c2/rO)/(1-2GM/c2/rS))1/2
- 1 ( r = distance from the origin )
01 LBL "GRZ"
02 4.2416 E-6
03 R^
04 *
05 CHS
06 ENTER^
07 R^
08 /
09 X<> Z
10 /
11 RCL X
12 RCL Z
13 -
14 X<> Z
15 1
16 ST+ Z
17 +
18 ST* Y
19 X<>Y
20 SQRT
21 +
22 /
23 END
( 45 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Z | M | a |
Y | rS | a |
X | rO | adv(p) |
where M = Mass of the gravitational
body ( in Solar
mass )
rS = distance source-gravitational body
( in Solar radius )
rO = distance observer-gravitational body ----------------
Example: M = 2 , rS = 3 , rO = 4
2 ENTER^
3 ENTER^
4 XEQ "GRZ" >>>> z = 3.5347
10-7
-If M is expressed in kg and rS , rO
are in meters, replace line 02 by 14849 E-31
-When M = mass of the Earth, rO = radius of the Earth and
rO-rS = 22.496 m, it yields z ~
2.46 10-15
-This very small effect has been measured and confirmed by Pound &
Rebka in 1960
-If both GM/(c2r) are small ( GM/(c2r) << 1 ) we can use a much shorter routine:
01 LBL "GRZ2"
02 1/X
03 CHS
04 X<>Y
05 1/X
06 +
07 *
08 2.1208 E-6
or 74243 E-32 if M is expressed in kg
and r in meter
09 *
10 END
2°) Gravitational Radiation on Circular Orbits
-We now assume that 2 celestial bodies move on cicular orbits around
their common center of gravity.
-Because of gravitational radiation, the system looses a small energy,
and their trajectories are actually spirals.
-The distance r between these 2 masses ( m1 & m2
) is slowly decreasing according to the differential equation:
dr/dt = -64G3 m1.m2 ( m1 + m2 ) / ( 5.c5.r3 )
-If r = r0 at an instant t = 0 the following program calculates at what time T we'll have r = r1 ( r1 < r0 )
01 LBL "SPI"
02 X^2
03 X^2
04 X<>Y
05 X^2
06 X^2
07 -
08 ABS
09 RDN
10 ST* Z
11 +
12 *
13 /
14 32114 E13
15 *
16 END
( 32 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | m1 | m1 |
Z | m2 | m1 |
Y | r0 | m1 |
X | r1 | T |
where mi are expressed in Solar Masses and
rj are expressed in Astronomical Units
The result T is expressed in years
Example: Let's take once again the binary
pulsar PSR J0737-3039 m1 = 1.25
, m2 = 1.34 ( we neglect
the small eccentricity )
-Currently, r is approximately 0.00586 AU
-Find in how many time we'll have r = 0.001 AU
1.25 ENTER^
1.34
ENTER^
0.00586 ENTER^
0.001 XEQ "SPI"
>>>> 87 Million years
-The coalescence time is estimated 85 Million years ( it's the
shortest currently known ).
-If mi are in kg and rj are in meters,
replace line 14 with 1.592026 E71
3°) Cosmology
-Einstein's equations Sij - (1/2) gij
( S + 2.Lambda ) = ( 8.PI.G/c4 ) Tij
are now applied to a homogeneous and isotropic Universe.
( Sij is the tensor of curvature
, S = SijSij , Lambda is the cosmological constant
and Tij describes the content of the Universe )
-This "cosmological principle" leads to the Robertson-Walker metric: ds2 = c2dt2 - R2(t)/(1-kr2/4)2 . ( dr2 + r2d(theta)2 + r2sin2(theta)d(phi)2 )
r , theta , phi are the comoving
spherical coordinates
R(t) is the scale factor = the "radius" of the Universe
k = +1 for Spherical Universes
k = 0 for Euclidean
---------
k = -1 for Hyperbolic ---------
-Usually, Tij = ( (rho).c2 + p ) uiuj
- p gij ( gij is
the metric tensor ; rho = density of matter and energy ; p = pressure ;
ui = dxi/ds = 4-velocity )
and Einstein's equations yield:
2 R(t).d2R/dt2 + (dR/dt)2
+ k.c2 = ( -(8.PI.G/c2 ).p + (Lambda).c2
).R2(t)
(dR/dt)2 + k.c2
= ( (8.PI.G/3) (rho) + (Lambda/3).c2 ).R2(t)
_________________________________________________________________________________________________________________________
-If R(t) is constant and p = 0, this system leads to Einstein's static model: k = +1 , R = RE = c.(4.PI.G.(rho))-1/2 ; Lambda = 4.PI.G.(rho)/c2 = 1/R2
With rho = 5 10 -28 kg/m3
it yields R = 4.63 1026 m ~ 15 Gpc
, Lambda = 4.665 10 -54 m-2
Einstein's Universe is a 3-sphere and its volume is
2.PI2.R3 = 1.959 1081 m3
~ 66700 Gpc3
Its mass is M = 9.796 1053 kg
_________________________________________________________________________________________________________________________
-To simplify the equations when R is not constant, we now assume p = 0 ( vanishing pressure ) and we use the following parameters:
H =
(1/R).dR/dt
= Hubble constant
q
= -R.(d2R/dt2)/(dR/dt)2 =
deceleration parameter
(Omega)mat = 8.PI.G.(rho)/(3H2) =
density parameter
(Omega)vac = (Lambda.c2)/(3H2)
= L
-The equations reduce to:
2.q + 2.L
= 8.PI.G.(rho)/(3H2)
2.q + 3.L - 1 = k.c2/(H2R2)
and lead to the integral H0.t = § [ ( 2q0+2.L0 )/y + ( 1-2q0-3L0 ) + L0.y2 ] -1/2 dy
where y = R/R0 , the subscript 0 meaning a current value
-Knowing the cosmological redshift z of a galaxy, and the values of
the current parameters q0 , L0
the following programs computes several "distances", the recessional
velocity and the age of the Universe.
D
= light-travel time distance ( in light-years ) = light-travel time
( in years )
D0 = comoving distance ( in light-years )
DL = luminosity-distance ( in light-years )
VR = recessional velocity ( speed of light = 1 )
t0 = age of the Universe ( in years )
D = (c/H0) §y(em)1
[ ( 2q0+2.L0 )/y + ( 1-2q0-3L0
) + L0.y2 ] -1/2 dy
y(em) = y at the instant of emission z + 1 = R0/R
= 1/yem
D0 = (c/H0) §y(em)1
[ ( 2q0+2.L0 ).y + ( 1-2q0-3L0
).y2 + L0.y4 ] -1/2 dy
D0 = Dnow
F(x) = Sinh(x) if k = -1
DL = R0 ( z + 1 ) F(D0/R0)
where F(x) = x
if k = 0
F(x) = Sin(x) if k = +1
VR = H0.D0
t0 = (c/H0)
§01 [ ( 2q0+2.L0
)/y + ( 1-2q0-3L0 ) + L0.y2
] -1/2 dy
-We also have k = sign( 2q0+3L0-1 ) and R0 = (c/H0) k.( 2q0+3L0-1 ) -1/2 R0 may be choosen arbitrarily ( positive ) if k = 0
-Since z + 1 = R0/R = 1/y , these programs may also
be used to draw the graph of the function R(t)
z > 0 for the past , -1 < z <
0 for the future.
-Here is a summary of the different models:
_______________________________________________MANY
UNIVERSES___________________________________________________
-According to the values of q and L, the different kinds of Universes
may be represented as follows:
V Hyp E
Sph q
C1
*
e
| c
*
e Dom2 |
c
*
e
| c
* Dom1e
| c
* e
| c
* e 1|
c
* e |c
Dom4
* eA(0;1/2)
A = Einstein-de Sitter model
* | e
------------------------O|D3e---------------------------------------
L
| * e 1
2
| * e
| * e
-1 |
cB(1;-1)
B = de Sitter model
|
* c
|
* c
|
* c
-2 |
* c
|
* Dom5 c
|
*
C2
W
-Line (VW): q + L = 0
represents empty Universes. On the left of this line, the density of matter
is negative: q + L < 0
-Line (BE): 2q + 3L -1 = 0 ---------- Euclidean Universes.
On the left of this line, Universes are hyperbolic. On the right, they
are spherical.
-Domains1&2: VOAE & EAC1 there is a Big Bang and a Big Crunch
R(t)
|
*
| *
*
| *
*
--------|*------------------------------*---------
t
O
-Domains3&4: OAB & C1ABC2
there is a Big Bang and no Big Crunch. R(t) has a point of inflexion and
R(t) tends to infinity as t tends to infinty
Our Universe seems to be inside triangle OAB, near the midpoint of [OB]
R(t)
|
*
|
*
|
*
|
*
| *
| *
------|*---------------------------------------------
t
O
-Domain5: WBC2 there is no Big Bang and no Big Crunch. R(t) has a positive minimum ( bounce models )
R(t)
|
| *
*
| *
*
| *
*
| *
*
|
*
------|-----------------------------------
t
O
-Critical parameters:
-Lines )AcccC1) and )BcccC2) represent
"critical" cosmological constants. On theses lines, we have: ( 3L+2q-1)3
= 27 L(q+L)2
-The straight-line R = RE is an asymptote of the
curve R = R(t) in both cases:
R(t)
|
*
|
*
Einstein-Lemaitre models: Line )BC2)
There is no Big Bang and R(t) = RE for t =
- infinity
|
*
|
*
|*
|----------------------------------------------------------------------------
Einstein's
model R(t) = RE = constant
|
*
|
*
| *
| *
Einstein-Eddington models: Line )AC1)
There is a Big Bang and R(t) = RE for t = + infinity
------|*--------------------------------------------------------------------------
t
_________________________________________________________________________________________________________________________
a) Friedmann Universes: No Cosmological Constant , L0 = 0
a-1) Einstein-de Sitter Model: q0 = 1/2 ; L0 = 0
-This is an Euclidean Universe: 2q0 + 3L0 - 1 = 0 whence k = 0
Formulae:
D = (c/H0).(2/3).( 1 - (1 + z )-3/2
)
D0 = 2(c/H0).( 1 - (1 + z )-1/2
)
DL = D0 ( 1 + z )
R(t) = (3H0t/2)2/3 if we choose
R0 = 1
VR = H0 D0
t0 = (2/3)H0
01 LBL "EdS"
02 1
03 +
04 ENTER^
05 ENTER^
06 SQRT
07 1/X
08 CHS
09 ENTER^
10 R^
11 /
12 1
13 ST+ Z
14 +
15 STO M
16 RDN
17 STO Z
18 ST+ Z
19 ST* Y
20 137 E8
21 ST+ X
22 ST* M
23 ST* Z
24 *
25 3
26 ST/ M
27 ST/ L
28 CLX
29 X<> M
30 END
( 53 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | / | D0 |
X | z | D |
L | / | t0 |
Example: z = 7
7 XEQ "EdS" >>>> D =
8.730 109 ly
RDN D0 = 17.713 109 ly
RDN DL = 141.701 109 ly
RDN VR = 1.2929
LASTX t0 = 9.133 109 years
a-2) Spherical Models: q0 > 1/2 ; L0 = 0
-Here, k = +1
Formulae:
D = (c/H0/(2q0-1)).[ -1 + (2q0z+1)1/2/(z+1)
- (q0/(2q0-1)1/2) ( Arccos ((2q0-1)/q0-1)
- Arccos ((2q0-1)/(q0(z+1)) -1) ]
D0 = (c/H0/(2q0-1)1/2).[
- Arccos ((2q0-1)/q0-1) + Arccos ((2q0-1)/(q0(z+1))
-1) ]
DL = R0 ( 1 + z ) Sin D0/R0
R0 = c/H0/(2q0-1)1/2
VR = H0 D0
t0 = (1/H0/(2q0-1))
[ -1 - (q0/(2q0-1)1/2) ( Arccos ((2q0-1)/q0-1)
- PI ]
-The period of these Universes ( time between a Big Bang and a Big Crunch
) is T = (1/H0)(2.pi.q0).(2q0-1)
-3/2
01 LBL "FRSPH"
02 DEG
03 1
04 +
05 STO M
06 X<>Y
07 ENTER^
08 STO P ( synthetic
)
09 ST+ X
10 LASTX
11 -
12 STO N
13 X<>Y
14 /
15 ENTER^
16 ENTER^
17 SIGN
18 -
19 ACOS
20 CHS
21 STO T
22 X<> Z
23 /
24 PI
25 R-D
26 ST+ T
27 SIGN
28 -
29 ACOS
30 +
31 STO O
32 RCL P
33 RCL N
34 SQRT
35 /
36 D-R
37 ST* Z
38 *
39 RCL M
40 RCL P
41 ST+ X
42 ST* Y
43 -
44 1
45 ST- T
46 +
47 SQRT
48 RCL M
49 ST- Y
50 /
51 +
52 X<> M
53 RCL O
54 SIN
55 *
56 RCL N
57 ST/ M
58 ST/ Z
59 SQRT
60 ST/ Y
61 R-D
62 ST/ O
63 X<> Z
64 SIGN
65 X<> O
66 STO Z
67 137 E8
68 ST* L
69 ST* M
70 ST* Y
71 ST* Z
72 X<> M
73 CLA
74 END
( 121 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example: q0 = 2 ; z = 3
2 ENTER^
3 XEQ "FRSPH" >>>> D =
5.871 109 ly
RDN D0 = 9.482 109 ly
RDN DL = 29.474 109 ly
RDN VR = 0.6921
LASTX t0 = 6.477 109 years
Note: For q0 = 0.50001
the results are still approximately correct ( almost those of Einstein-de
Sitter model )
but with q0 = 0.500001
, D and t0 are wrong! ( due to roundoff errors )
a-3) Hyperbolic Models: 0 < q0 < 1/2 ; L0 = 0
-Here, k = -1
Formulae:
D = (c/H0/(1-2q0)).[ 1 - (2q0z+1)1/2/(z+1)
- (q0/(1-2q0)1/2) ( Arccosh ((1-q0)/q0)
- Arccos ((1-2q0)/(q0(z+1)) +1) ]
D0 = (c/H0/(1-2q0)1/2).[
Arccosh ((1-q0)/q0) - Arccosh ((1-2q0)/(q0(z+1))
+1) ]
DL = R0 ( 1 + z ) Sinh D0/R0
R0 = c/H0/(1-2q0)1/2
VR = H0 D0
t0 = (1/H0/(1-2q0))
[ 1 - (q0/(1-2q0)1/2) Arccosh ((1-q0)/q0)
]
01 LBL "FRHYP"
02 1
03 +
04 STO M
05 X<>Y
06 ENTER^
07 STO P ( synthetic
)
08 ST+ X
09 SIGN
10 LASTX
11 -
12 STO N
13 X<>Y
14 /
15 ENTER^
16 ENTER^
17 X^2
18 LASTX
19 ST+ X
20 +
21 SQRT
22 +
23 LN1+X
24 X<>Y
25 RCL M
26 /
27 ENTER^
28 X^2
29 LASTX
30 ST+ X
31 +
32 SQRT
33 +
34 LN1+X
35 -
36 STO O
37 RCL P
38 RCL N
39 SQRT
40 /
41 CHS
42 ST* Z
43 *
44 RCL M
45 RCL P
46 ST+ X
47 ST* Y
48 -
49 1
50 ST+ T
51 +
52 SQRT
53 RCL M
54 ST- Y
55 /
56 -
57 X<> M
58 RCL O
59 E^X
60 ENTER^
61 1/X
62 -
63 *
64 2
65 /
66 RCL N
67 ST/ M
68 ST/ Z
69 SQRT
70 ST/ Y
71 ST/ O
72 X<> Z
73 SIGN
74 X<> O
75 STO Z
76 137 E8
77 ST* L
78 ST* M
79 ST* Y
80 ST* Z
81 X<> M
82 CLA
83 END
( 130 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example: q0 = 0.4 ; z = 7
0.4 ENTER^
7 XEQ "FRHYP" >>>> D =
9.087 109 ly
RDN D0 = 18.708 109 ly
RDN DL = 159.140 109 ly
RDN VR = 1.3655
LASTX t0 = 9.534 109 years
b) Empty Universes: q0 + L0 = 0
b-1) Milne Model: q0 = 0
k = -1 ( hyperbolic geometry )
Formulae:
D = (c/H0).z/(z+1)
D0 = 2(c/H0).Ln(z+1)
DL = R0 z(z+2)/2
R0 = c/H0
R(t) = c.t
VR = H0 D0
t0 = 1/H0
01 LBL "MLN"
02 ENTER^
03 STO M
04 1
05 +
06 ST/ M
07 LN
08 X<>Y
09 1
10 LASTX
11 +
12 *
13 2
14 /
15 X<>Y
16 137 E8
17 ST* M
18 ST* Z
19 *
20 0
21 X<> M
22 END
( 39 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | / | D0 |
X | z | D |
L | / | t0 |
Example: z = 7
7 XEQ "MLN" >>>> D =
11.988 109 ly
RDN D0 = 28.488 109 ly
RDN DL = 431.550 109 ly
RDN VR = 2.0794
LASTX t0 = 13.700 109 years
b-2) de Sitter Model: q0 = -1
k = 0 ( Euclidean geometry )
Formulae:
D = (c/H0).Ln(z+1)
D0 = (c/H0).z
DL = (c/H0).z(z+1)
VR = H0 D0
t0 = infinity
R(t) = exp(H0.t) the mimimum =
0 when t = minus infinity
01 LBL "dST"
02 ENTER^
03 STO Z
04 1
05 +
06 ST* Z
07 LN
08 STO M
09 CLX
10 137 E8
11 ST* M
12 ST* Z
13 *
14 DEG
15 90
16 TAN
17 SIGN
18 CLX
19 X<> M
20 END
( 39 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | / | D0 |
X | z | D |
L | / | t0 |
Example: z = 7
7 XEQ "dST" >>>> D =
28.488 109 ly
RDN D0 = 95.900 109 ly
RDN DL = 767.200 109 ly
RDN VR = 7.0000
LASTX t0 = 9.9999 1099 years
= infinity
b-3) -1 < q0 < 0
-Recent observations suggest that q0 is of the order of -1/2
Formulae: k = -1 ( hyperbolic geometry )
D = (c/H0/(-q0)1/2).
[ Arcsinh (1/b) - Arcsinh (1/b/(z+1)) ] where
b = ((1+q0)/(-q0))1/2
D0 = (c/H0/(1+q0)1/2).
Ln ( ( 1/b2 + (z+1)2 )1/2 + z+1 )/((1/b2+1)1/2+1
)
DL = R0 ( 1 + z ) Sinh D0/R0
R0 = c/H0/(1+q0)1/2
R(t) = R0.b Sinh ( H0.t.(-q0)1/2
)
VR = H0 D0
t0 = 1/H0/(-q0)1/2
Arcsinh 1/b
01 LBL "VAC"
02 1
03 +
04 STO M
05 X<>Y
06 ENTER^
07 CHS
08 STO N
09 LASTX
10 -
11 /
12 STO O
13 SQRT
14 LASTX
15 1
16 STO Q
17 +
18 SQRT
19 ST+ Q
20 +
21 ENTER^
22 R^
23 ST* Y
24 X^2
25 RCL O
26 +
27 SQRT
28 STO P ( synthetic
)
29 RCL O
30 SQRT
31 +
32 /
33 LN
34 X<> M
35 ENTER^
36 X<> P
37 +
38 RCL Q
39 /
40 LN
41 STO O
42 X<> L
43 ENTER^
44 1/X
45 -
46 RCL P
47 *
48 2
49 /
50 X<>Y
51 LN
52 RCL N
53 SQRT
54 ST/ M
55 /
56 1
57 RCL N
58 -
59 SQRT
60 ST/ O
61 ST/ Z
62 RDN
63 SIGN
64 X<> O
65 STO Z
66 137 E8
67 ST* L
68 ST* M
69 ST* Y
70 ST* Z
71 X<> M
72 CLA
73 END
( 112 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example: q0 = -0.3 ; z = 7
-0.3 ENTER^
7 XEQ "VAC" >>>> D
= 13.341 109 ly
RDN D0 = 32.552 109 ly
RDN DL = 469.215 109 ly
RDN VR = 2.3761
LASTX t0 = 15.386 109 years
b-4) q0 > 0
k = -1 ( hyperbolic geometry )
Formulae:
D = (c/H0/q01/2).
[ Arcsin (1/b) - Arcsin (1/b/(z+1)) ] where
b = ((1+q0)/q0)1/2
D0 = (c/H0/(1+q0)1/2).
Ln ( ( ( -1/b2 + (z+1)2 )1/2 + z+1 )/((-1/b2+1)1/2+1
)
DL = R0 ( 1 + z ) Sinh D0/R0
R0 = c/H0/(1+q0)1/2
R(t) = R0.b Sin ( H0.t.q01/2
)
VR = H0 D0
t0 = 1/H0/q01/2
Arcsin 1/b
01 LBL "VAC2"
02 DEG
03 1
04 +
05 X<>Y
06 ENTER^
07 STO N
08 LASTX
09 +
10 /
11 STO M
12 CHS
13 X<>Y
14 X^2
15 +
16 SQRT
17 +
18 1
19 RCL M
20 -
21 SQRT
22 1
23 +
24 /
25 LN
26 STO O
27 X<> L
28 ENTER^
29 1/X
30 -
31 *
32 2
33 /
34 RCL M
35 SQRT
36 ST/ Z
37 ASIN
38 ENTER^
39 R^
40 1/X
41 ASIN
42 -
43 D-R
44 STO M
45 RDN
46 D-R
47 RCL N
48 SQRT
49 ST/ M
50 /
51 1
52 RCL N
53 +
54 SQRT
55 ST/ O
56 ST/ Z
57 RDN
58 SIGN
59 X<> O
60 STO Z
61 137 E8
62 ST* L
63 ST* M
64 ST* Y
65 ST* Z
66 X<> M
67 CLA
68 END
( 101 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example: q0 = 0.3 ; z = 7
0.3 ENTER^
7 XEQ "VAC2" >>>>
D = 11.031 109 ly
RDN D0 = 25.737 109 ly
RDN DL = 403.673 109 ly
RDN VR = 1.8786
LASTX t0 = 12.534 109 years
b-5) q0 < -1
k = +1 ( spherical geometry )
Formulae:
D = (c/H0/(-q0)1/2).
[ Arccosh (1/b) - Arccosh (1/b/(z+1)) ] where
b = ((1+q0)/q0)1/2
D0 = (c/H0/(-1-q0)1/2).
[ Arccos b - Arccos b(z+1) ]
DL = R0 ( 1 + z ) Sin D0/R0
R0 = c/H0/(-1-q0)1/2
R(t) = R0.b Cosh ( H0.t.(-q0)1/2
) Rmin = R0.b
VR = H0 D0
t0 = 1/H0/(-q0)1/2
Arccosh 1/b = the time since the minimum of the scale factor
01 LBL "VAC3"
02 DEG
03 1
04 +
05 STO M
06 X<>Y
07 CHS
08 ENTER^
09 STO N
10 LASTX
11 -
12 /
13 STO O
14 SQRT
15 LASTX
16 1
17 -
18 SQRT
19 +
20 ENTER^
21 R^
22 ST* Y
23 X^2
24 CHS
25 RCL O
26 +
27 SQRT
28 RCL O
29 SQRT
30 +
31 /
32 LN
33 X<> M
34 STO Z
35 RCL O
36 SQRT
37 1/X
38 ST* Y
39 ACOS
40 X<>Y
41 ACOS
42 -
43 STO O
44 SIN
45 R^
46 *
47 X<>Y
48 LN
49 RCL N
50 SQRT
51 ST/ M
52 /
53 RCL N
54 1
55 -
56 SQRT
57 ST/ Z
58 R-D
59 ST/ O
60 RDN
61 SIGN
62 X<> O
63 STO Z
64 137 E8
65 ST* L
66 ST* M
67 ST* Y
68 ST* Z
69 X<> M
70 CLA
71 END
( 107 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example: q0 = -1.1 ; z = 2
-1.1 ENTER^
2 XEQ "VAC3" >>>>
D = 18.458 109 ly
RDN D0 = 35.699 109 ly
RDN DL = 95.381 109 ly
RDN VR = 2.6057
LASTX t0 = 24.408 109 years
*** In these models, there is no Big Bang:
t0 = the time since the minimum of the scale factor R(t)
The age of the Universe is actually infinite.
Notes:
-In these Universes, z cannot exceed a maximum redshift:
zmax = (q0/(q0+1))1/2 - 1
-With q0 = -1.1 , zmax
= 2.3166
-In fact, there are 2 distances for a given redshift ( one during the
contracting phase and another one during the expanding phase )
-This program only gives the distance corresponding to the expanding
phase.
c) Eddington-Lemaitre
Universes ( Critical parameters )
-Here, ( 3L0+2q0-1)3 = 27 L0(q0+L0)2 and L0 is found by: 6.L0 = ( q0 + 1 )2 - 6.( q0 + 1 ) + 6 + [ ( q0 + 1 )4 -(4/3).( q0 + 1 )3 ]1/2
Formulae: with a = (1/2).(1+q0/L0) -1/3
H0.D/c = (1/(2a)) sign(-q0).[2a(q0+L0)]
-1/2 { 3-1/2 Ln [ ( (z+1+a)1/2+(3a)1/2
).( (1+a)1/2-(3a)1/2 )/( (z+1+a)1/2-(3a)1/2
)/( (1+a)1/2+(3a)1/2 ) ]
+ Ln [ ( (z+1+a)1/2-a1/2 ).( (1+a)1/2+a1/2
)2/( (z+1+a)1/2+a1/2 ) ] }
H0.D0/c = sign(-q0).[2a(q0+L0)] -1/2 3-1/2 Ln [ ( (z+1+a)1/2+(3a)1/2 ).( (1+a)1/2-(3a)1/2 )/( (z+1+a)1/2-(3a)1/2 )/( (1+a)1/2+(3a)1/2 ) ]
H0.t0 = (1/(2a)) [2a(q0+L0)]
-1/2 { 3-1/2 Ln [ ( (1+a)1/2+(3a)1/2
)/( (1+a)1/2-(3a)1/2 ) ] - Ln ( (1+a)1/2+a1/2
)2 } if q0 > 1/2
t0 = infinity
if q0 < -1
-All these Universes are spherical ( k = +1 )
Data Registers: /
Flag: F10
Subroutines: /
01 LBL "LEM"
02 DEG
03 CF 10
04 1
05 +
06 STO M
07 X<>Y
08 X>0?
09 SF 10
10 STO N
11 LASTX
12 +
13 STO Y
14 4
15 3
16 /
17 -
18 *
19 *
20 *
21 SQRT
22 X<> Z
23 6
24 -
25 *
26 +
27 6
28 ST+ Y
29 /
here, X-register = L0 Add STO
00 after this line if you want to save this number.
30 STO P
( synthetic )
31 RCL N
32 X<>Y
33 ST+ Y
34 /
35 PI
36 INT
37 1/X
38 Y^X
39 ST+ X
40 1/X
here, X-register = a Add STO 01 after
this line if you want to save this value.
41 STO Q
42 RCL M
43 +
44 SQRT
45 STO Y
46 RCL Q
47 PI
48 INT
49 *
50 SQRT
51 STO O
52 ST+ Z
53 -
54 ST/ Y
55 CLX
56 SIGN
57 RCL Q
58 +
59 SQRT
60 RCL X
61 RCL O
62 ST+ Z
63 -
64 /
65 ST/ Y
66 X>0?
67 LN
68 STO O
69 X<>Y
70 LN
71 FS? 10
72 CHS
73 PI
74 INT
75 SQRT
76 ST/ O
77 /
78 RCL M
79 RCL Q
80 +
81 SQRT
82 RCL X
83 RCL Q
84 SQRT
85 ST- Z
86 +
87 /
88 RCL Q
89 ENTER^
90 SIGN
91 +
92 SQRT
93 RCL Q
94 SQRT
95 +
96 X^2
97 LN
98 ST- O
99 X<> L
100 *
101 LN
102 FS? 10
103 CHS
104 +
105 RCL N
106 RCL P
107 +
108 RCL Q
109 ST+ X
110 ST/ O
111 ST/ Z
112 *
113 SQRT
114 ST/ O
115 ST/ Z
116 /
117 RCL P
118 3
119 *
120 RCL N
121 ST+ X
122 +
123 1
124 -
125 SQRT
126 ST/ M
127 R^
128 *
129 R-D
130 SIN
131 ST* M
132 CLX
133 137 E8
134 ST* M
135 ST* O
136 ST* Y
137 ST* Z
138 CLX
139 90
140 TAN
141 FS?C 10
142 X<> O
143 SIGN
144 X<> M
145 X<> Z
146 X<>Y
147 CLA
148 END
( 219 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
with q0 > 1/2 ( Eddington
models )
or q0 < -1
( Lemaitre models )
-Such "critical" models don't exist if q0 is between -1 and 1/2
Example1: q0 = -1.1 ; z = 2 whence L0 = 1.107976565 ( line 29 )
-1.1 ENTER^
2 XEQ "LEM"
>>>> D = 17.355 109 ly
RDN D0 = 32.783 109 ly
RDN DL = 87.124 109 ly
RDN VR = 2.3930
LASTX t0 = 9.9999 1099 years
= infinity
-If q0 < -1 , z must be smaller
than 2a - 1 ( ymin
= 1/(2a) ) here a = 2.589454154
( line 40 )
Example2: q0 = 2.375 ; z = 2 whence L0 = 1 ( line 29 )
2.375 ENTER^
2 XEQ "LEM"
>>>> D = 5.0238 109 ly
RDN D0 = 7.4017 109 ly
RDN DL = 15.599 109 ly
RDN VR = 0.5403
LASTX t0 = 5.7825 109 years
-If q0 > 1/2 , ymax = 1/(2a) , here a = 1/3
-Writing SIZE 000 programs is always an interesting challenge,
but several bytes may be saved if you use standard registers
...
d) Euclidean
Universes
-We now assume k = 0 i-e 3.L0 + 2.q0 - 1 = 0
q0 = 1/2 is Einstein-de Sitter model
q0 = -1 is de Sitter model
-For other q0-values, the comoving distance requires
elliptic integrals
but the light-travel time distance D and the age of the Universe
may be expressed in terms of elementary functions:
d-1)
-1 < q0 < 1/2
Formulae: H0.t0 = (3-6q0) -1/2 Ln ( (1+a)1/2 + a1/2 )2 with a = (1-2q0)/(2+2q0)
H0.D/c = (3-6q0) -1/2
Ln [ ( ( (z+1)3 + a )1/2 - a1/2 ) ( (
(z+1)3 + a )1/2 + a1/2 ) -1
( (1+a)1/2 + a1/2 )2 ]
01 LBL "EUCL"
02 X<>Y
03 ENTER^
04 ST+ X
05 1
06 ST+ Z
07 ST+ T
08 -
09 CHS
10 STO M
11 X<>Y
12 ST+ X
13 /
14 ENTER^
15 R^
16 3
17 Y^X
18 +
19 SQRT
20 ENTER^
21 R^
22 SQRT
23 ST- Z
24 +
25 /
26 1
27 R^
28 ST+ Y
29 SQRT
30 X<>Y
31 SQRT
32 +
33 X^2
34 ST* Y
35 LN
36 X<>Y
37 LN
38 0
39 X<> M
40 3
41 *
42 SQRT
43 137 E8
44 X<>Y
45 /
46 ST* Z
47 *
48 END
( 71 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Y | q0 | t0 |
X | z | D |
Example: q0 = -0.7 & z = 7 ( whence L0 = 0.8 )
-0.7 ENTER^
7 XEQ "EUCL"
>>>> D = 1.3840 1010 ly
X<>Y t0 = 1.4742 1010
years
d-2)
q0 > 1/2
Formulae: H0.t0 = (-3+6q0) -1/2 [ PI - 2.Arctan ( (1+a)1/2 (-a) -1/2 ) ] with a = (1-2q0)/(2+2q0)
H0.D/c = 2.(-3+6q0) -1/2
[ Arctan ( ( (z+1)3 + a )1/2 (-a) -1/2
) - Arctan ( ( 1 + a )1/2 (-a) -1/2 ]
01 LBL "EUCL2"
02 DEG
03 X<>Y
04 ENTER^
05 ST+ X
06 1
07 ST+ Z
08 ST+ T
09 -
10 STO M
11 X<>Y
12 ST+ X
13 /
14 ENTER^
15 R^
16 3
17 Y^X
18 -
19 CHS
20 1
21 R^
22 ST- Y
23 ST/ Z
24 /
25 SQRT
26 ATAN
27 X<>Y
28 SQRT
29 ATAN
30 X<>Y
31 ST- Y
32 D-R
33 CHS
34 ST+ X
35 PI
36 +
37 X<>Y
38 ST+ X
39 D-R
40 0
41 X<> M
42 3
43 *
44 SQRT
45 137 E8
46 X<>Y
47 /
48 ST* Z
49 *
50 END
( 76 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Y | q0 | t0 |
X | z | D |
Example: q0 = 2 & z = 7 ( whence L0 = -1 )
2 ENTER^
7 XEQ "EUCL"
>>>> D = 6.8878 109 ly
X<>Y t0 = 7.1733 109
years
e) More
General Models
e-1)
Numerical Integration ( program#1 )
-Three integrals are needed to compute t0 , D and D0
-The following program uses the change of variable y = u2
and Gauss-Legendre 3-point formula.
Data Registers: R00 thru R16 R00 thru R08 are used by "GL3"
R09: z + 1
R12: 2(q0 + L0)
R15-R16: temp
R10: q0
R13: 2q0 + 3L0 - 1
R11: L0
R14: (1/H0).t0
when the program stops: R00 = k
( +1 = Spherical , 0 = Euclidean , -1 = Hyperbolic )
R01 = D , R02 = D0 , R03 = DL , R04 = VR
, R05 = t0 , R06 = R0 ( current scale factor )
Flags: F00 set flag F00 if
you don't want to re-calculate the age of the Universe t0
F10
Subroutine: "GL3" Gauss-Legendre
3-point formula ( cf "Numerical Integration for the HP-41" )
01 LBL "COSMO"
02 DEG
03 1
04 STO 02
05 +
06 STO 09
07 "S"
08 ASTO 00
09 SF 10
10 FS? 00
11 GTO 01
12 CLX
13 STO 01
14 +
15 STO 10
16 X<>Y
17 STO 11
18 +
19 X<0?
20 LN
you'll get DATA ERROR if the density of matter is negative
i-e q0 + L0 < 0
21 STO 12
22 ST+ X
23 +
24 1
25 -
26 STO 13
27 3
28 Y^X
29 RCL 12
30 ST+ 12
31 X^2
32 27
33 *
34 RCL 11
35 *
36 X>Y?
37 GTO 00
38 RCL 10
39 1
40 +
41 X>0?
42 GTO 00
43 90
44 TAN
if ( 3L+2q-1)3 >= 27 L(q+L)2
and q <= -1 there is no Big Bang and t0
= infinity ( 9.999999999 E99 for the HP-41 )
45 STO 14
46 GTO 01
47 LBL 00
48 XEQ 02
49 STO 14
50 LBL 01
51 RCL 09
52 SQRT
53 1/X
54 STO 01
55 XEQ 02
56 STO 15
57 CF 10
58 XEQ 02
59 STO 02
60 STO 04
61 RCL 13
62 ABS
63 SQRT
64 X=0?
65 SIGN
66 1/X
67 STO 06
68 /
69 ENTER^
70 E^X-1
71 LASTX
72 CHS
73 E^X-1
74 -
75 2
76 /
77 RCL Y
78 R-D
79 SIN
80 RCL 13
81 X#0?
82 ENTER^
83 X>0?
84 ENTER^
85 GTO 04
86 LBL 02
Lines 86 to 103 use Gauss Legendre 3-point formula
87 E99
the number n of subintervals ( in register R03 ) is doubled until 2 consecutive
rounded
values are equal
88 STO 16
thus, the accuracy is controlled by the display format
89 SIGN
90 STO 03
Actually, for our Universe ( q0 of the order of -0.5
and L0 of the order of 0.6 ),
91 LBL 03
the results have at least 6 significant digits if n = 4 and lines 87 to
103 may be replaced by 4 STO 03 XEQ "GL3" RTN
92 RCL 03
93 ST+ 03
With our Universe, n = 10 produces almost 10 significant figures!
94 XEQ "GL3"
95 VIEW X
96 RND
97 LASTX
98 X<> 16
99 RND
100 X#Y?
101 GTO 03
102 RCL 04
103 RTN
104 LBL "S"
105 X^2
106 ENTER^
107 ENTER^
108 X^2
109 RCL 11
110 *
111 RCL 13
112 -
113 *
114 RCL 12
115 +
116 SQRT
117 1/X
118 ST+ X
119 FS? 10
120 *
121 RTN
122 LBL 04
123 R^
124 RCL 06
125 *
126 RCL 09
127 *
128 STO 03
129 RCL 13
130 X#0?
131 SIGN
132 STO 00
133 RCL 14
134 STO 05
135 RCL 15
136 STO 01
137 137 E8
138 ST* 01
139 ST* 02
140 ST* 03
141 SF 25
142 ST* 05
143 ST* 06
144 RCL 05
145 SIGN
146 RCL 04
147 RCL 03
148 RCL 02
149 RCL 01
150 CLD
151 CLA
152 CF 25
153 END
( 212 bytes / SIZE 017 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | L0 | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example1: L0 = 0.7 ; q0 = -0.6 ; z = 7
*** These values correspond to (Omega)vac = L0 = 0.7 & (Omega)mat = 2(L0+q0) = 0.2 whence (rho)mat = 3H02(L0+q0)/(4PI.G) ~ 1.91 10-27 kg/m3
0.7 ENTER^
-0.6 ENTER^
7 XEQ "COSMO" >>>>
D = 1.3283 1010 ly
= R01
( in 93s in FIX 4 )
The successive approximations
RDN D0 = 3.0246 1010 ly
= R02
of the 3 integrals ( for t0 D0
DL )
RDN DL = 2.6210 1011 ly
= R03
are displayed during the calculations.
RDN VR = 2.2077
= R04
LASTX t0 = 1.4168 1010 years
= R05
-We also have R06 = 4.3323 1010
= current scale factor = R(t0) = R0
and R00 = k = -1 , meaning the
Universe is hyperbolic.
-Registers R10 thru R14 will be initialized after executing "COSMO"
once.
-Set flag F00 and simply place z in X-register to compute other distances
with the same cosmological parameters and the same accuracy.
-This program may be used to draw a graphic representation of R(t):
( add FS? 04 RTN after line 56 and set
flags F00 and F04 in order to calculate H0.(
t0 - t ) only )
for example: z = 7 means
y = 1/8 ( z = 1/y - 1 ) and light-travel time = 1.3283
1010 = t0 - t
whence t = 8.85 1010 or
H0.t = 0.0646 ( if y = 1/8 )
-More directly, add LBL "IG" after line 86 LBL 02 and load this short routine:
01 LBL "Y-H0T"
In this program, the origine of time ( t = 0 ) is the Big Bang.
02 X=0?
Of course, it will not work if there is no Big Bang!
03 RTN
In this case, replace lines 02 to 08 by
04 SF 10
05 SQRT
SF 10 SQRT STO 02 1 STO
01
06 STO 02
07 CLX
Thus, the origin of time will be "now"
08 STO 01
09 "S"
10 ASTO 00
11 XEQ "IG"
12 CLA
13 END
-Initialize registers R11 to R13 ( this is done if you have already
executed "COSMO" )
and with our example: q0 =
-0.6 ; L0 = 0.7
it yields ( in FIX 3 )
For y = 3 3 XEQ "Y-H0T" >>>>
2.267 and similarly:
y | 0 | 0.1 | 0.25 | yI | 0.75 | 1 | 1.25 | 1.5 | 1.75 | 2 | 2.5 | 3 | 10 |
H0.t | 0 | 0.046 | 0.178 | 0.495 | 0.765 | 1.034 | 1.266 | 1.466 | 1.640 | 1.793 | 2.053 | 2.267 | 3.700 |
y = R(t)/R0
|
3 |
*
|
|
*
|
2 |
*
|
*
|
*
|
*
1 |
* now ( y = 1 )
|
*
|
* Infl
|
*
|*----------|----------|----------|----------|-------
H0.t
0
0.5
1 1.5
2
Here, yI = ( 1 + q0/L0)1/3
= 0.522757959 I is a point of
inflexion: q > 0 for y < yI
and q < 0 for y > yI
Example2: L0 = 2/3 ; q0 = -0.5 ; z = 7
*** These values correspond to (Omega)vac = L0 = 2/3 & (Omega)mat = 2(L0+q0) = 1/3 whence (rho)mat = 3H02(L0+q0)/(4PI.G) ~ 3.19 10-27 kg/m3
2 ENTER^ 3
/
-0.5 ENTER^
7 XEQ "COSMO" >>>>
D = 1.2123 1010 ly
= R01
( in 97s in FIX 4 )
RDN D0 = 2.6605 1010 ly
= R02
RDN DL = 2.1284 1011 ly
= R03
RDN VR = 1.9420
= R04
LASTX t0 = 1.2822 1010 years
= R05
-We also have R06 = 1.3700 1010
= current scale factor = R(t0) = R0
and R00 = k = 0 , we have an
Euclidean Universe.
Example3: L0 = 0.6 ; q0 = -0.3 ; z = 7
*** These values correspond to (Omega)vac = L0 = 0.4 & (Omega)mat = 2(L0+q0) = 0.6 whence (rho)mat = 3H02(L0+q0)/(4PI.G) ~ 5.74 10-27 kg/m3
0.6 ENTER^
-0.3 ENTER^
7 XEQ "COSMO" >>>>
D = 1.0689 1010 ly
= R01
( in 120s in FIX 4 )
RDN D0 = 2.2467 1010 ly
= R02
RDN DL = 1.6405 1011 ly
= R03
RDN VR = 1.6399
= R04
LASTX t0 = 1.1217 1010 years
= R05
-We also have R06 = 3.0634 1010
= current scale factor = R(t0) = R0
and R00 = k = +1 , the Universe
is spherical.
Notes:
-If there is no Big Bang, the minimum ymin = Rmin/R0 may be found by solving the cubic equation: L0.y3 + ( 1-2q0-3L0 ).y + ( 2q0+2.L0 ) = 0
For example, if q0 = -1.1
& L0 = 1.102 the cubic 1.102
y3 - 0.106 y + 0.004 = 0 has 3 real roots:
0.289201975 ; 0.038320885 ; -0.327522859
and ymin = 0.289201975 which
corresponds to zmax = 1/ymin - 1 = 2.457791053
-If z is close to zmax , "COSMO" will be very slow: thus, in FIX 3
1.102 ENTER^
-1.1 ENTER^
2.45 XEQ "COSMO" yields
D = 2.459 1010
in 1h16mn for only 2 integrals !
D0 = 5.599 1010
DL = 1.410 1011
VR = 4.087
R0 = 4.208 1010
-For similar reasons, long execution time is to be expected if you are
looking for the half-period of an oscillating universe ( Domains 1&2
)
-"Plateau" models ( when the parameters L and q are close to their
"critical" values ) are a third difficult case.
-In all these 3 cases, the integrand is ( or is almost ) singular and
a good 41-emulator in turbo mode will be useful!
e-2)
Numerical Integration ( program#2 )
-The program above gives accurate results in most cases, especially
for our Universe.
-If, however, you want to explore other models, other changes of variable
may be better. "COSMO2" uses the following ones:
a) If y has a positive minimum ( bounce models
) we set: y = ymin cosh2 v
b) If y has a finite maximum ( oscillating
models ) we set: y = ymax sin2
v
c) For "plateau" models, we set y = b + e.sinh
v where b+i.e , b-i.e are the complex roots of the radicand
( e > 0 ).
-This last change of argument is put forward with little enthusiasm
because numerical integration remains difficult for plateau models.
-However, it performs much better than "COSMO", and even better if
you are using the integrator listed in the PPC ROM user manual.
Data Registers: R00 thru R22
R10: z + 1
R13: 2(q0 + L0)
R16: ymax
R19: proportional to D
R11: q0
R14: -2q0 - 3L0 + 1
R17: proportional to t0
R20-R21-R22: temp
R12: L0
R15: ymin
R18: proportional to T
when the program stops: R00 = k
( +1 = Spherical , 0 = Euclidean , -1 = Hyperbolic )
R01 = D , R02 = D0 , R03 = DL , R04 = VR
, R05 = t0 , R06 = R0 ( current scale factor )
R07 = Rmin , R08 = Rmax ,
R09 = T = Period of an oscillating Universe ( 0 otherwise )
-Here, for bounce Universes, t0 is reckoned from the minimum of the scale factor R(t) ( the age of the Universe is infinite )
Flags: F00 set flag F00 if
you don't want to (re-)calculate the age of the Universe t0and
the period T
F01 is used by "P3" to indicate complex roots
F10
Subroutines: "P3"
Cubic equations ( cf "Polynomials for the HP-41" )
"GL3" Gauss-Legendre 3-point formula ( cf "Numerical Integration
for the HP-41" )
01 LBL "COSMO2"
02 DEG
03 CF 01
04 SF 10
05 1
06 STO 02
07 +
08 STO 10
09 CLX
10 STO 01
11 STO 18
12 +
13 STO 11
14 X<>Y
15 STO 12
16 +
17 ST+ X
18 X<0?
19 LN
20 STO 13
21 1
22 RCL Y
23 -
24 R^
25 -
26 STO 14
27 R^
28 X=0?
29 GTO 00
30 CLX
31 X<> Z
32 XEQ "P3"
33 GTO 01
34 LBL 00
35 RDN
36 CHS
37 X<=0?
38 CLST
39 X#0?
40 /
41 LBL 01
42 STO 03
43 RDN
44 STO 21
45 FS? 01
46 CLX
47 STO 04
48 X<>Y
49 STO 22
50 FS? 01
51 CLX
52 STO 05
53 1
54 RCL 03
55 X<Y?
56 GTO 00
57 CLX
58 RCL 04
59 X<Y?
60 GTO 00
61 CLX
62 RCL 05
63 X>Y?
64 CLX
65 LBL 00
66 X<0?
67 CLX
68 STO 15
69 CLX
70 RCL 05
71 X>Y?
72 GTO 00
73 CLX
74 RCL 04
75 X>Y?
76 GTO 00
77 CLX
78 RCL 03
79 X>Y?
80 GTO 00
81 90
82 TAN
83 LBL 00
84 STO 16
85 90
86 TAN
87 -
88 RCL 15
89 +
90 X=0?
91 GTO 03
92 LASTX
93 X=0?
94 GTO 02
95 "S1"
96 ASTO 00
97 SQRT
98 1/X
99 RCL 15
100 1/X
101 1
102 -
103 SQRT
104 +
105 LN
106 STO 02
107 RCL 03
108 RCL 04
109 X#Y?
110 GTO 00
111 90
112 TAN
113 GTO 01
114 LBL 00
115 FC? 00
116 XEQ 05
117 LBL 01
118 FC? 00
119 STO 17
120 RCL 10
121 RCL 15
122 *
123 1/X
124 SQRT
125 LASTX
126 1
127 -
128 SQRT
129 +
130 LN
131 GTO 04
( theoretically a three-byte GTO )
132 LBL 02
133 "S2"
134 ASTO 00
135 90
136 STO 02
137 RCL 03
138 RCL 04
139 X=Y?
140 GTO 01
141 FC? 00
142 XEQ 05
143 ST+ X
144 FC? 00
145 STO 18
146 LBL 01
147 RCL 16
148 SQRT
149 1/X
150 ASIN
151 STO 02
152 FC? 00
153 XEQ 05
154 FC? 00
155 STO 17
156 RCL 10
157 RCL 16
158 *
159 SQRT
160 1/X
161 ASIN
162 GTO 04
163 LBL 03
164 RCL 11
165 1
166 +
167 FS? 01
168 X>0?
169 GTO 03
170 20
171 1/X
172 RCL 22
173 ABS
174 STO 22
175 X>Y?
176 GTO 03
177 "S3"
178 ASTO 00
179 RCL 21
180 X<>Y
181 /
182 ENTER^
183 X^2
184 1
185 +
186 SQRT
187 +
188 LN
189 CHS
190 STO 01
191 1
192 RCL 21
193 -
194 RCL 22
195 /
196 ENTER^
197 X^2
198 1
199 +
200 SQRT
201 +
202 LN
203 STO 02
204 FC? 00
205 XEQ 05
206 FC? 00
207 STO 17
208 RCL 10
209 1/X
210 RCL 21
211 -
212 RCL 22
213 /
214 ENTER^
215 X^2
216 1
217 +
218 SQRT
219 +
220 LN
221 GTO 04
222 LBL 03
223 "S"
224 ASTO 00
225 RCL 11
226 1
227 +
228 RCL 12
229 X=Y?
230 X#0?
231 GTO 00
232 90
233 TAN
234 GTO 01
235 LBL 00
236 FC? 00
237 XEQ 05
238 LBL 01
239 FC? 00
240 STO 17
241 RCL 10
242 SQRT
243 1/X
244 LBL 04
245 STO 01
246 XEQ 05
247 STO 19
248 CF 10
249 XEQ 05
250 STO 02
251 STO 20
252 RCL 14
253 ABS
254 SQRT
255 X=0?
256 SIGN
257 1/X
258 STO 03
259 STO 06
260 STO 07
261 STO 08
262 /
263 ENTER^
264 E^X-1
265 LASTX
266 CHS
267 E^X-1
268 -
269 2
270 /
271 RCL Y
272 R-D
273 SIN
274 RCL 14
275 X#0?
276 ENTER^
277 X<0?
278 ENTER^
279 GTO 07
( theoretically a three-byte GTO )
280 LBL 05
281 E99
282 STO 20
283 SIGN
284 STO 03
285 LBL 06
286 RCL 03
287 ST+ 03
288 XEQ "GL3"
289 VIEW X
290 RND
291 LASTX
292 X<> 20
293 RND
294 X#Y?
295 GTO 06
296 RCL 04
297 RTN
298 LBL "S"
299 X^2
300 ENTER^
301 ENTER^
302 X^2
303 RCL 12
304 *
305 RCL 14
306 +
307 *
308 RCL 13
309 +
310 SQRT
5 bytes may be saved if you add LBL 00 after
line 336
311 1/X
and if you replace lines 310 to 315 by GTO 00
312 ST+ X
313 FS? 10
314 *
315 RTN
316 LBL "S1"
317 E^X
318 ENTER^
319 1/X
320 +
321 2
322 /
323 X^2
324 RCL 15
325 *
326 ENTER^
327 STO Z
328 RCL 15
329 +
330 *
331 RCL 12
332 *
333 RCL 13
334 RCL 15
335 /
336 -
337 SQRT
338 1/X
339 ST+ X
340 FS? 10
341 *
342 RTN
343 LBL "S2"
344 SIN
345 X^2
346 RCL 16
347 *
348 ENTER^
349 STO Z
350 RCL 16
351 +
352 *
353 RCL 12
354 CHS
355 *
356 RCL 13
357 RCL 16
358 /
359 +
360 SQRT
361 1/X
362 ST+ X
363 D-R
364 FS? 10
365 *
366 RTN
367 LBL "S3"
368 E^X
369 ENTER^
370 1/X
371 -
372 2
373 /
374 RCL 22
375 *
376 RCL 21
377 +
378 STO Y
379 LASTX
380 ST+ X
381 +
382 RCL 12
383 *
384 FS? 10
385 GTO 00
386 *
387 SQRT
388 1/X
389 RTN
390 LBL 00
391 /
392 SQRT
393 RTN
394 LBL 07
395 R^
396 RCL 10
397 *
398 ST* 03
399 RCL 14
400 X#0?
401 SIGN
402 CHS
403 STO 00
404 RCL 17
405 STO 05
406 RCL 19
407 STO 01
408 RCL 15
409 ST* 07
410 SF 24
411 RCL 16
412 ST* 08
413 RCL 18
414 STO 09
415 9
416 137 E8
417 LBL 08
418 ST* IND Y
419 DSE Y
420 GTO 08
421 RCL 05
422 SIGN
423 RCL 20
424 STO 04
425 RCL 03
426 RCL 02
427 RCL 01
428 CLA
429 CLD
430 CF 24
431 END
( 602 bytes / SIZE 023 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | L0 | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example1: L0 = 1.102 ; q0 = -1.1 ; z = 2.45
1.102 ENTER^
-1.1 ENTER^
2.45 XEQ "COSMO2"
>>>> D = 2.4589 1010 ly
= R01
( in 110s in FIX 3 instead of more than 1 hour with "COSMO" )
RDN D0 = 5.5990 1010 ly
= R02
RDN DL = 1.4101 1011 ly
= R03
RDN VR = 4.0869
= R04
LASTX t0 = 2.5501 1010 years
= R05
-We also have R00 = k = 1 ( Spherical
Universe )
R06 = 4.2079 1010 = current scale factor = R(t0)
= R0
R07 = 1.2169 1010 = Rmin ( bounce model
)
R08 = 9.9999 1099 = Rmax = infinity
R09 = 0 ( non-oscillating Universe )
Example2: L0 = 0.2 ; q0 = 2 ; z = 7
0.2 ENTER^
2 ENTER^
7 R/S
>>>> D = 6.1763 109 ly
= R01
( in 158s in FIX 3 )
RDN D0 = 1.1392 1010 ly
= R02
RDN DL = 5.7763 1010 ly
= R03
RDN VR = 0.8315
= R04
LASTX t0 = 6.3750 109 years
= R05
-We also have R00 = k = +1 ( Spherical Universe
)
R06 = 7.2205 109 = current scale factor = R(t0)
= R0
R07 = 0 = Rmin
R08 = 9.8405 109 = Rmax
R09 = 3.5658 1010 = T = time between a Big Bang and a
Big Crunch.
Example3: L0 = 1.108 ; q0 = -1.1 ; z = 7
1.108 ENTER^
-1.1 ENTER^
7
R/S >>>> D = 6.7540 1010
ly = R01
( in 11mn25s in FIX 3 )
RDN D0 = 2.8508 1011 ly
= R02
RDN DL = 2.6910 1011 ly
= R03
RDN VR = 20.8088
= R04
LASTX t0 = 7.2650 1010 years
= R05
and
R00 = k = 1 ( Spherical Universe )
R06 = 3.8905 1010 = current scale factor = R(t0)
= R0
R07 = 0 = Rmin
R08 = 9.9999 1099 = Rmax = infinity
R09 = 0 ( non-oscillating Universe )
-This is a "plateau model" : it spends a long time in a quasistatic
state.
- D and D0 are computed ( relatively ) fast ( provided
z is not too large ), but t0 requires much more iterations.
-For q0 = -1.1 the critical
L0 is approximately 1.107976565 ( cf Lemaitre
models )
e-3)
Elliptic Integrals ( Big Bang Universes only )
- t0 , D and D0 may be computed by Legendre
elliptic integrals ( cf the last 2 references below )
- "COSMO3" uses Carlson elliptic integrals instead: the
formulas are simpler.
D = (c/H0) §1z+1
du / u / ( 2(q0+L0 ).u3 + (1-2q0-3L0
).u2 + L0 )1/2
u = 1/y ; t0
corresponds to z = infinity
D0 = (c/H0) §1z+1
du / ( 2(q0+L0 ).u3 + (1-2q0-3L0
).u2 + L0 )1/2
-If the cubic 2(q0+L0 ).u3 + (1-2q0-3L0 ).u2 + L0 = 0 has 3 real roots a , b , c we have:
D = (c/3/H0) (2/(q0
+ L0 ))1/2 [ R J ( -a+1 ,
-b+1 , -c+1 , 1 ) - R J ( -a+z+1 , -b+z+1 , -c+z+1
, z+1 ) ]
D0 = (c/H0)
(2/(q0 + L0 ))1/2 [
R F ( -a+1 , -b+1 , -c+1 ) - R F ( -a+z+1
, -b+z+1 , -c+z+1 ) ]
-If the cubic 2(q0+L0 ).u3 + (1-2q0-3L0 ).u2 + L0 = 0 has only 1 real root a and a pair of complex conjugate roots b + i.c , b - i.c we have:
D = (c/3/H0) (2/(q0
+ L0 ))1/2 [ R J ( -a+1 ,
-b+1+i.c , -b+1-i.c , 1 ) - R J ( -a+z+1 , -b+z+1+i.c
, -b+z+1-i.c , z+1 ) ]
D0 = (c/H0) (2/(q0
+ L0 ))1/2 [ R F ( -a+1
, -b+1+i.c , -b+1-i.c ) - R F ( -a+z+1 , -b+z+1+i.c
, -b+z+1-i.c ) ]
-This program doesn't work if there is no big bang or if the Universe
is empty.
Data Registers: R00 thru R21
R13:
-a
R16: z + 1
R19: proportional to t0
R14: -b
R17: q0 + L0
R20: ymax
R15: -c
R18: 2q0 + 3L0 - 1
R21: proportional to T
when the program stops: R00 = k
( +1 = Spherical , 0 = Euclidean , -1 = Hyperbolic )
R01 = D , R02 = D0 , R03 = DL , R04 = VR
, R05 = t0 , R06 = R0 ( current scale factor )
R07 = Rmax , R08 = T = Period of an oscillating
Universe ( 0 otherwise )
Flags: F00 set flag F00 if
you don't want to re-calculate the age of the Universe t0and
the period T
F01 is used by "P3" to indicate complex roots
Subroutines: "P3"
( cf "Polynomials for the HP-41" )
"RF" & "RJ" Carlson elliptic integrals of the first and third
kind ( cf "Jacobian Elliptic Functions
and Elliptic Integrals for the "HP-41" )
"RFZ" & "RJZ" ----------------------------------------------
complex arguments ----------------------------------------------------
01 LBL "COSMO3"
02 1
03 +
04 STO 16
05 FS? 00
06 GTO 04
( theoretically a three-byte GTO )
07 CLX
08 +
09 +
add X<0? LN after this line
if you want to get "DATA ERROR" for a negative density of matter
10 STO 17
11 ST+ X
12 STO Z
13 +
14 1
15 -
16 STO 18
17 0
18 STO 21
19 R^
20 CHS
21 XEQ "P3"
22 STO 13
23 RDN
24 STO 14
25 X<>Y
26 STO 15
27 X<>Y
28 R^
29 1
30 XEQ 02
31 STO 19
32 90
lines 32 to 69 may be deleted if you don't want to calculate Rmax
and T
33 TAN
34 STO 20
35 SIGN
36 CHS
37 FS? 01
38 GTO 00
39 RCL 15
40 X>Y?
41 GTO 01
42 CLX
43 RCL 14
44 X>Y?
45 GTO 01
46 X<>Y
47 LBL 00
48 RCL 13
49 X<Y?
50 CLX
51 LBL 01
52 CHS
53 X<=0?
54 GTO 04
55 1/X
56 STO 20
57 RCL 15
58 RCL 14
59 X<0?
lines 59 to 64 are only useful if the Universe is an Eddington model (
finite Rmax but no Big Crunch )
60 X#Y?
61 FS? 30
62 FS? 01
63 FS? 30
64 GTO 04
65 RCL 13
66 LASTX
67 XEQ 02
68 ST+ X
69 STO 21
70 GTO 04
71 LBL 02
72 FC? 01
73 ST+ T
74 ST+ Z
75 ST+ Y
76 RDN
77 FS? 01
78 XEQ "RJZ"
79 FC? 01
80 XEQ "RJ"
81 RTN
82 LBL 03
83 FC? 01
84 ST+ T
85 ST+ Z
86 +
87 FS? 01
88 XEQ "RFZ"
89 FC? 01
90 XEQ "RF"
91 RTN
92 LBL 04
93 RCL 15
94 RCL 14
95 RCL 13
96 RCL 16
97 XEQ 02
98 RCL 19
99 X<>Y
100 -
101 STO 10
102 RCL 15
103 RCL 14
104 RCL 13
105 RCL 16
106 XEQ 03
107 STO 12
108 RCL 15
109 RCL 14
110 RCL 13
111 1
112 XEQ 03
113 RCL 12
114 -
115 STO 02
116 RCL 10
117 STO 01
118 RCL 19
119 STO 05
120 RCL 20
121 STO 07
122 RCL 21
123 STO 08
124 2
125 RCL 17
126 /
127 SQRT
128 ST* 02
129 3
130 /
131 ST* 01
132 ST* 05
133 ST* 08
134 RCL 18
135 X#0?
136 SIGN
137 STO 00
138 RCL 02
139 STO 09
140 RCL 18
141 ABS
142 SQRT
143 X=0?
144 SIGN
145 1/X
146 STO 06
147 SF 24
148 ST* 07
149 /
150 ENTER^
151 E^X-1
152 LASTX
153 CHS
154 E^X-1
155 -
156 2
157 /
158 RCL Y
159 R-D
160 SIN
161 RCL 00
162 X#0?
163 ENTER^
164 X>0?
165 ENTER^
166 R^
167 RCL 06
168 *
169 RCL 16
170 *
171 STO 03
172 8
173 137 E8
174 LBL 05
175 ST* IND Y
176 DSE Y
177 GTO 05
178 RCL 05
179 SIGN
180 RCL 09
181 STO 04
182 RCL 03
183 RCL 02
184 RCL 01
185 CF 24
186 END
( 286 bytes / SIZE 022 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | L0 | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example1: L0 = 0.7 ; q0 = -0.6 ; z = 7
0.7 ENTER^
-0.6 ENTER^
7 XEQ "COSMO3" >>>>
D = 1.328255073 1010 ly
= R01
( in 140s ) flag F01 is set
RDN D0 = 3.024557313 1010
ly = R02
RDN DL = 2.621046346 1011
ly = R03
RDN VR = 2.207706068
= R04
LASTX t0 = 1.416778742 1010
years = R05
-We also have R00 = k = -1 , meaning the Universe
is hyperbolic.
R06 = 4.332320394 1010 = current scale factor = R(t0)
= R0
R07 = 9.999999999 1099 = infinity = Rmax
R08 = 0 ( non oscillating Universe )
Example2: L0 = 0.2 ; q0 = 2 ; z = 7
0.2 ENTER^
2 ENTER^
7 XEQ "COSMO3"
>>>> D = 6.176349709 109
ly = R01
( in 145s ) flag F01 is clear
RDN D0 = 1.139222269 1010
ly = R02
RDN DL = 5.776287398 1010
ly = R03
RDN VR = 0.831549101
= R04
LASTX t0 = 6.375024998 109
years = R05
-We also have R00 = k = +1 ( Spherical Universe
)
R06 = 7.220533991 109 = current scale factor = R(t0)
= R0
R07 = 9.840506634 109 = Rmax
R08 = 3.565763808 1010 = T = time between a Big Bang
and a Big Crunch.
-Registers R13 thru R21 will be initialized after executing "COSMO3"
once.
-Set flag F00 , do not change flag F01 and simply place z in X-register
to compute other distances with the same cosmological parameters.
Note: With L0
= 1.108 & q0 = -1.1
"COSMO3" yields t0 = 7.264885687 1010
years
f) Non-Vanishing
Pressure
-We now assume that the Universe is made of dust & radiation.
-In this case, Einstein's equations yields:
2.q + 2.L
= 8.PI.G.(rho)/(3H2) + ¶
where ¶ = 8.PI.G.prad/(c2H2)
is the pressure parameter = (Omega)rad
2.q + 3.L - 1 = k.c2/(H2R2)
+ ¶
and prad is the pressure
of radiation
(rho) = (rho)mat + 3.prad/c2
and according to Stefan's law: 3prad = (rho)rad
c2 = a.T4
where a = Stefan's
Constant and T = temperature of the Cosmic Microwave Background
-If we assume there is no creation/annihilation of matter, (rho)mat
R3 = constant and prad R4
= constant.
-The integrals become:
D = (c/H0) §y(em)1
y. [ L0.y4 + ( 1+¶0-2q0-3L0
).y2 + 2.( q0+L0- ¶0 ).y
+ ¶0 ] -1/2 dy
y(em) = y at the instant of emission z + 1 = R0/R
= 1/yem
D0 = (c/H0) §y(em)1
[ L0.y4 + ( 1+¶0-2q0-3L0
).y2 + 2.( q0+ L0- ¶0
).y + ¶0 ] -1/2 dy
D0 = comoving radial distance
-We now have (Omega)mat = 2(q0+L0-¶0)
f-1)
Pure Radiation
-Then, (Omega)mat = 0 whence ¶0 = q0+L0
-Such models have been studied by Tolman.
-There are many cases, and the following program only works for Big
Bang Universes with a positive Cosmological Constant.
-The comoving radial distance involves elliptic integrals and "TOL"
calculates the light-travel time Distance D,
the age of the Universe t0 , the current radius of
the Universe R0 and the constant k
( D & t0 may be expressed in terms of elementary
functions )
Formula:
H0.(t0 - te ) = 1/(2.L01/2) Ln { [ 1 + (1-q0-2.L0)/(2.L0) + 1/L01/2 ] / [ 1/(z+1)2 + (1-q0-2.L0)/(2.L0) + ( 1/(z+1)4 + ( (1-q0-2.L0)/(z+1)2 + q0+ L0 )/L0 )1/2 ] }
( replace z by +infinity to get t0 )
Data Registers: /
Flags: /
Subroutines: /
01 LBL "TOL"
02 1
03 +
04 X^2
05 1/X
06 STO N
07 CLX
08 +
09 +
10 STO M
11 +
12 STO O
13 SIGN
14 ST- O
15 X<>Y
16 SQRT
17 1/X
18 +
19 RCL O
20 RCL N
21 *
22 RCL M
23 X<>Y
24 -
25 R^
26 /
27 RCL N
28 X^2
29 +
30 SQRT
31 RCL O
32 R^
33 ST/ M
34 STO P
( synthetic )
35 ST+ X
36 /
37 ST- Y
38 ST- Z
39 ST- T
40 X<> N
41 +
42 /
43 LN
44 X<> M
45 SQRT
46 RCL N
47 -
48 /
49 LN
50 RCL P
51 SQRT
52 ST+ X
53 ST/ M
54 /
55 RCL O
56 ABS
57 LASTX
58 X#0?
59 SIGN
60 RDN
61 X=0?
62 SIGN
63 SQRT
64 1/X
65 STO Z
66 CLX
67 137 E8
68 ST* M
69 ST* Z
70 *
71 RCL M
72 CLA
73 END
( 111 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | k |
Z | L0>0 | R0 |
Y | q0 | t0 |
X | z | D |
( execution time = 3 seconds )
Example: L0 = 0.61 ; q0 = -0.6 ; z = 7
0.61 ENTER^
-0.6
ENTER^
7
XEQ "TOL" >>>> D = 1.461832570 1010
light-years
RDN t0 = 1.556294166 1010
years
RDN R0 = 2.222433469 1010
light-years
RDN k = -1 ( hyperbolic Universe )
-Neglecting matter is probably not realistic, unless an unknown negative
density of matter
exactly compensate for the positive density of matter in the
galaxies ( ???? )
f-2)
Radiation+Dust: Numerical Integration
Data Registers: R00 thru R18 • R09 = nbre of subintervals if F03 is set ( unused otherwise )
R10: z + 1
R13: ¶0
R16: proportional to t0
R11: q0
R14: 2( q0 + L0 - ¶0
) = (Omega)mat
R17: proportional to D
R12: L0
R15: 2q0 + 3L0 - ¶0 - 1
R18: temp
-when the program stops: R00 = k
( +1 = Spherical , 0 = Euclidean , -1 = Hyperbolic )
R01 = D , R02 = D0 , R03 = DL , R04 = VR
, R05 = t0 , R06 = R0 ( current scale factor )
Flags: F00 set flag F00
if you don't want to (re-)calculate the age of the Universe t0
F03 set flag F03 to fix the number n of subintervals used by "GL3"
and store n into R09
if F03 is clear, n is doubled until 2 consecutive rounded values are equal.
F10
Subroutine: "GL3" Gauss-Legendre
3-point formula ( cf "Numerical Integration for the HP-41" )
01 LBL "COSMO4"
02 DEG
03 SF 10
04 STO 10
05 "S"
06 ASTO 00
07 CLX
08 STO 01
09 +
10 STO 11
11 X<>Y
12 STO 12
13 +
14 X<>Y
15 STO 13
16 -
17 ST+ X
18 STO 14
19 +
20 RCL 12
21 +
22 1
23 STO 02
24 ST+ 10
25 -
26 STO 15
27 FC? 00
28 XEQ 01
29 FC? 00
30 STO 16
31 RCL 10
32 SQRT
33 1/X
34 STO 01
35 XEQ 01
36 STO 17
37 CF 10
38 XEQ 01
39 STO 02
40 STO 04
41 RCL 15
42 ABS
43 SQRT
44 X=0?
45 SIGN
46 1/X
47 STO 03
48 STO 06
49 /
50 ENTER^
51 E^X-1
52 LASTX
53 CHS
54 E^X-1
55 -
56 2
57 /
58 RCL Y
59 R-D
60 SIN
61 RCL 15
62 X#0?
63 ENTER^
64 X>0?
65 ENTER^
66 GTO 03
67 LBL 01
68 CLX
69 STO 18
70 SIGN
71 FS? 03
72 RCL 09
73 STO 03
74 LBL 02
75 RCL 03
76 FC? 03
77 ST+ 03
78 XEQ "GL3"
79 ST+ X
80 VIEW X
81 FS? 03
82 RTN
83 RND
If flag F03 is clear, the accuracy is controlled by the display format
84 ENTER^
85 X<> 18
86 X#Y?
87 GTO 02
88 LASTX
89 RTN
90 LBL "S"
91 X^2
92 ENTER^
93 ENTER^
94 X^2
95 RCL 12
96 *
97 RCL 15
98 -
99 *
100 RCL 14
101 +
102 *
103 RCL 13
104 +
105 /
106 SQRT
107 FS? 10
108 *
109 RTN
110 LBL 03
111 R^
112 RCL 10
113 *
114 ST* 03
115 RCL 15
116 X#0?
117 SIGN
118 STO 00
119 RCL 16
120 STO 05
121 RCL 17
122 STO 01
123 SF 25
124 137 E8
125 ST* 01
126 ST* 02
127 ST* 03
128 ST* 05
129 ST* 06
130 RCL 05
131 SIGN
132 RCL 04
133 RCL 03
134 RCL 02
135 RCL 01
136 CF 25
137 CLA
138 CLD
139 END
( 200 bytes / SIZE 019 )
STACK | INPUTS | OUTPUTS |
T | ¶0 | VR |
Z | L0 | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example: ¶0 = 0.01 ; L0 = 0.62 ; q0 = -0.6 ; z = 7
-Let's fix the number of subintervals for the Gaussian integration, for instance: n = 8 STO 09 SF 03
0.01 ENTER^
0.62 ENTER^
-0.6 ENTER^
7 XEQ "COSMO4"
>>>> D = 1.438258446 1010
l-y = R01 ( in 80 seconds )
RDN D0 = 3.419896391 1010
l-y = R02
RDN DL = 3.844671484 1011
l-y = R03
RDN VR = 2.496274738
= R04
LASTX t0 = 1.528106505
1010 y = R05
[ RCL 06 ] R0 = 2.315722657 1010
l-y
[ RCL 00 ] k = -1 ( hyperbolic geometry )
-In this example, almost all digits are significant.
-For our Universe, if we take ¶0 = 0.000049
; L0 = 0.519 ; q0 =
-0.5 ; z = 7 , t0
is obtained with only 6 significant digits ( with n = 8 )
-Obviously, the effects of the pressure of radiation are very small
and they may be neglected except in the very early age of the Universe.
f-3)
Radiation+Dust: Elliptic Integrals
-There are many subcases and the following program only works if the
cosmological
constant is positive
and if the quartic: L0.y4
+ ( 1+¶0-2q0-3L0 ).y2
+ 2.( q0+ L0- ¶0 ).y + ¶0
has 2 distinct non-positive roots and a pair of complex conjugate
roots.
-These conditions are precisely satisfied by our Universe!
Formulae: 1°) The D0 integral is calculated by the following method:
§ab [ ( y2+c.y+d ) ( y2+p.y+q ) ] -1/2 dy = 2.RF ( U2 ; U2+T+V ; U2+T-V )
where (b-a).U = [ A(a).B(b) ]1/2 + [ A(b).B(a)
]1/2 with A(y) = (
y2+c.y+d ) and B(y) = ( y2+p.y+q
)
T = c.p/2 - d - q
V = 2 [ ( c2/4 - d ) ( p2/4 - q ) ]1/2
2°) The other integral is of the form I = §ab y [ ( y+m ) ( y+n ) ( y2+p.y+q ) ] -1/2 dy and involves elliptic integrals of the 3rd kind.
-Unfortunately, I can't have access to the required tables of Elliptic Integrals. So I've split this integral into 2 integrals:
I = §ab ( y+ m ) [ ( y+m ) ( y+n ) ( y2+p.y+q ) ] -1/2 dy - §ab m [ ( y+m ) ( y+n ) ( y2+p.y+q ) ] -1/2 dy
-The integral on the right may be obtained as above.
-And the integral on the left is computed by executing RJZ twice ,
after the change of variable u = 1/(y+m)
-But you can certainly simplify the program and reduce execution time
if you know the tables of Carlson's elliptic integrals...
Data Registers: R00 thru R34
R10: z + 1
R13: ¶0
R26: proportional to t0
R11: q0
R14: 2( q0 + L0 - ¶0
) = (Omega)mat
R29: proportional to D
R12: L0
R15: 2q0 + 3L0 - ¶0 - 1
-when the program stops: R00 = k
( +1 = Spherical , 0 = Euclidean , -1 = Hyperbolic )
R01 = D , R02 = D0 , R03 = DL , R04 = VR
, R05 = t0 , R06 = R0 ( current scale factor )
Flags: F00 set flag F00
if you don't want to re-calculate the age of the Universe t0
F01 & F02 are used by "P4"
Subroutines: "P4" ( cf
"Polynomials for the HP-41" , the new version )
"1/Z" ( cf "Complex Functions for the HP-41" )
"RFZ"
& "RJZ" Carlson Elliptic Integrals of the 1st & 3rd
kind, complex arguments.
( cf "Jacobian elliptic functions and elliptic integrals for the
HP-41" )
01 LBL "COSMO5"
02 STO 10
03 CLX
04 +
05 STO 11
06 X<>Y
07 STO 12
08 +
09 X<>Y
10 STO 13
11 -
12 ST+ X
13 STO 14
14 +
15 RCL 12
16 +
17 1
18 ST+ 10
19 -
20 STO 15
21 CHS
22 RCL 14
23 R^
24 RCL 12
25 ST/ T
26 ST/ Z
27 /
28 0
29 RDN
30 XEQ "P4"
31 FS?C 01
32 FS?C 02
33 SF 99
34 STO 33
35 ST+ X
36 CHS
37 STO 18
38 RDN
39 STO 34
40 RDN
41 X<Y?
42 X<>Y
43 STO 16
44 X<>Y
45 STO 17
46 -
47 STO 32
48 R^
49 RCL 33
50 R-P
51 X^2
52 STO 19
53 RCL 18
54 +
55 1
56 +
57 STO 21
58 RCL 10
59 1/X
60 RCL 18
61 -
62 RCL 10
63 /
64 RCL 16
65 RCL 17
66 *
67 STO 20
68 +
69 *
70 SQRT
71 RCL 10
72 1/X
73 RCL 18
74 +
75 RCL 10
76 /
77 RCL 19
78 +
79 RCL 20
80 RCL 18
81 -
82 1
83 +
84 STO 22
85 *
86 SQRT
87 +
88 1
89 RCL 10
90 1/X
91 -
92 /
93 X^2
94 STO 23
95 RCL 18
96 X^2
97 RCL 20
98 4
99 *
100 -
101 RCL 19
102 RCL 18
103 2
104 /
105 X^2
106 -
107 *
108 SQRT
109 STO 24
110 RCL 18
111 X^2
112 CHS
113 2
114 /
115 RCL 19
116 -
117 RCL 20
118 -
119 STO 25
120 RCL 23
121 ST+ Y
122 XEQ "RFZ"
123 ST+ X
124 RCL 12
125 SQRT
126 /
127 STO 29
128 FS? 00
129 GTO 01
130 1
131 RCL 34
132 RCL 16
133 ST- Z
134 RCL 33
135 -
136 XEQ "1/Z"
137 STO 30
138 X<>Y
139 STO 31
140 X<>Y
141 RCL 32
142 1/X
143 R^
144 1/X
145 ST+ Y
146 ST+ Z
147 RDN
148 XEQ "RJZ"
149 STO 26
150 STO 27
151 RCL 31
152 RCL 30
153 RCL 32
154 1/X
155 RCL 16
156 CHS
157 X=0?
158 GTO 00
159 1/X
160 ST+ Y
161 ST+ Z
162 RDN
163 XEQ "RJZ"
164 ST- 26
165 LBL 00
166 RCL 33
167 RCL 16
168 -
169 X^2
170 RCL 34
171 X^2
172 +
173 RCL 32
174 *
175 SQRT
176 3
177 *
178 STO 28
179 ST/ 26
180 ST/ 27
181 RCL 24
182 RCL 19
183 RCL 22
184 *
185 SQRT
186 RCL 20
187 RCL 21
188 *
189 SQRT
190 +
191 X^2
192 RCL 25
193 X<>Y
194 ST+ Y
195 XEQ "RFZ"
196 RCL 16
197 *
198 ST+ 26
199 2
200 RCL 12
201 SQRT
202 /
203 ST* 26
204 LBL 01
205 RCL 31
206 RCL 30
207 RCL 10
208 1/X
209 RCL 16
210 -
211 1/X
212 RCL 32
213 1/X
214 X<>Y
215 ST+ Y
216 ST+ Z
217 RDN
218 XEQ "RJZ"
219 RCL 28
220 /
221 RCL 27
222 X<>Y
223 -
224 ST+ X
225 RCL 12
226 SQRT
227 /
228 RCL 29
229 RCL 16
230 *
231 +
232 STO 01
233 RCL 29
234 STO 02
235 STO 04
236 RCL 15
237 ABS
238 SQRT
239 X=0?
240 SIGN
241 1/X
242 STO 03
243 STO 06
244 /
245 ENTER^
246 E^X-1
247 LASTX
248 CHS
249 E^X-1
250 -
251 2
252 /
253 RCL Y
254 R-D
255 SIN
256 RCL 15
257 X#0?
258 ENTER^
259 X>0?
260 ENTER^
261 R^
262 RCL 10
263 *
264 ST* 03
265 RCL 15
266 X#0?
267 SIGN
268 STO 00
269 RCL 26
270 STO 05
271 137 E8
272 ST* 01
273 ST* 02
274 ST* 03
275 ST* 05
276 ST* 06
277 RCL 05
278 SIGN
279 RCL 04
280 RCL 03
281 RCL 02
282 RCL 01
283 END
( 424 bytes / SIZE 035 )
STACK | INPUTS | OUTPUTS |
T | ¶0 | VR |
Z | L0 | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example: ¶0 = 0.000049 ; L0 = 0.519 ; q0 = -0.5 ; z = 7
0.000049 ENTER^
0.519
ENTER^
-0.5
ENTER^
7
XEQ "COSMO5" >>>> D = 1.413693452
1010 l-y = R01
RDN D0 = 3.437776327 1010
l-y = R02
RDN DL = 4.219648045 1011
l-y = R03
RDN VR = 2.509325786
= R04
LASTX t0 = 1.565753235
1010 y = R05
[ RCL 06 ] R0 = 2.058233710 1010
l-y
[ RCL 00 ] k = -1 ( hyperbolic geometry )
-Execution time = 187 seconds if flag F00 is clear.
-Execution time = 78 seconds if flag F00 is set.
-The Cosmic Background at T = 2.736 K leads to ¶0
= 0.000049 if 1/H0 = 1.37 1010
years
- L0 = 0.519 corresponds to the baryonic matter only.
-With L0 = 0.519 & q0
= -0.5 a value of ¶0 = 0.001
would still be too great:
the quartic wouldn't satisfy the required conditions anymore
and you'd get NON EXISTENT line 33
References:
Stamatia Mavridès - "L'Univers relativiste" - Masson ISBN
2-225-36080-7 ( in French )
Jean Heidmann - "Introduction à la cosmologie" - PUF ( in
French )
Landau & Lifshitz - "Classical Theory of Fields" - Pergamon Press
Feige - "Elliptic Integrals for Cosmological Constant Cosmologies" - Astron.
Nachr 313 (1992) 3, 139-163
Kantowski, Kao, Thomas - "Distance-Redshift Relations in Inhomogeneous
Friedmann-Lemaitre-Robertson-Walker Cosmology" -
The Astrophysical Journal, 545: 549-560
Go back to the HP-41 software library
Go back to the general software library
Go
back to the main exhibit hall