This program is Copyright © 2006 by Jean-Marc Baillard and is used here by permission.
This program is supplied without representation or warranty of any kind. Jean-Marc Baillard and The Museum of HP Calculators therefore assume no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.
Overview
1°) Real Variable
2°) Complex Variable
-Kummer's function M(a,b,x) is defined by
M(a;b;x) = 1 + (a)1/(b)1.
x1/1! + ............. + (a)n/(b)n
. xn/n! + .......... where (a)n = a(a+1)(a+2)
...... (a+n-1)
1°) Real Variable
Data Registers:
R00 = x
• R01 = a
• R02 = b
registers R01 R02 are to be initialized before executing "KUM"
Flags: /
Subroutines: /
01 LBL "KUM"
02 STO 00
03 CLST
04 SIGN
05 ENTER^
06 STO T
07 LBL 01
08 X<> T
09 RCL 01
10 R^
11 ST+ Y
12 RDN
13 *
14 RCL 02
15 R^
16 ST+ Y
17 ISG X
18 CLX
19 ST* Y
20 RDN
21 /
22 RCL 00
23 *
24 STO T
25 X<>Y
26 ST+ Y
27 X#Y?
28 GTO 01
29 END
( 46 bytes / SIZE 002 )
STACK | INPUTS | OUTPUTS |
X | x | M(a;b;x) |
L | / | x |
Example: Compute M(2;3;-Pi)
2 STO 01
3 STO 02
PI CHS XEQ "KUM" yields
0.166374562 ( in 13 seconds )
Notes:
a) 2x (Pi)-1/2 M(1/2;3/2;-x2)
= erf(x) = error function
b) (x/2)n
M(n+1/2;2n+1;2x) = Gamma(1+n) ex In(x)
where In = a modified Bessel function
c) (xa/a)
M(a;a+1;-x) = incgam(a;x) = §0x
e-t ta-1 dt
( incgam = incomplete gamma function )
and many other functions are related to Kummer's functions.
2°) Complex Variable
-The parameters a & b are still real, but the variable
z = x + i.y is complex
Data Registers:
R00 and R03 thru R08: temp
• R01 = a
• R02 = b
registers R01 R02 are to be initialized before executing "KUMZ"
Flags: /
Subroutines: /
01 LBL "KUMZ"
02 R-P
03 STO 00
04 X<>Y
05 STO 03
06 CLX
07 STO 05
08 STO 06
09 STO 08
10 SIGN
11 STO 04
12 STO 07
13 LBL 01
14 RCL 03
15 RCL 08
16 +
17 STO 08
18 RCL 01
19 RCL 02
20 RCL 06
21 ST+ Z
22 +
23 ISG 06
24 CLX
25 RCL 06
26 *
27 /
28 RCL 00
29 *
30 RCL 07
31 *
32 STO 07
33 P-R
34 RCL 04
35 +
36 STO04
37 LASTX
38 -
39 X^2
40 X<>Y
41 RCL 05
42 +
43 STO 05
44 LASTX
45 -
46 X^2
47 +
48 X#0?
49 GTO 01
50 RCL 05
51 RCL 04
52 END
( 64 bytes / SIZE 009 )
STACK | INPUTS | OUTPUTS |
Y | y | y' |
X | x | x' |
with Kum ( a ; b ; x+i.y ) = x' + i.y'
Example: If a = 4 ; b = 3 4 STO 01 3 STO 02
2 ENTER^
1 XEQ "KUMZ >>>> -3.156090293
X<>Y 2.541499313
Whence Kum ( 4 ; 3 ; 1 + 2.i ) = -3.156090293
+ i. 2.541499313
Reference:
Abramowitz and Stegun , "Handbook of Mathematical Functions" - Dover
Publications - ISBN 0-486-61272-4
Go back to the HP-41 software library
Go back to the general software library
Go
back to the main exhibit hall