This program is Copyright © 1974 by Hewlett-Packard and is used here by permission. This program was originally published in the HP-65 Math Pac 2.
This program is supplied without representation or warranty of any kind. Hewlett-Packard Company and The Museum of HP Calculators therefore assume no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.
Euler Function Jn(x) | |||||
Label | Φ(n) | ||||
Key | A | B | C | D | E |
Φ(n) is the number of integers not exceeding and relatively prime to n, where n is a non-negative integer.
Suppose
n = p1m1p2m2. . . pkmk
where Pi (i = 1, 2, ..., k) are distinct primes dividing n, then
Φ(n) = n Πi=1..k(1-1/pi)
= Πi=1..k(pimi - pimi-1)
Step | Instructions | Input Data/Units | Keys | Output Data/Units |
1 | Enter Program | |||
2 | n | A | Φ(n) |
1. Φ(30) = 8.00
2. Φ(251) = 250.00
CODE KEYS 23 LBL 11 A 33 01 STO 1 01 1 33 02 STO 2 33 04 STO 4 02 2 33 03 STO 3 23 LBL 01 1 34 01 RCL 1 34 03 RCL 3 81 ÷ 34 03 RCL 3 35 24 g x>y 22 GTO 02 2 35 08 g R↓ 31 f 83 INT 35 00 g LST X 35 24 g x>y 22 GTO 03 3 33 01 STO 1 34 04 RCL 4 34 03 RCL 3 33 04 STO 4 35 21 g x≠y 01 1 51 - 33 STO 71 × 02 2 22 GTO 01 1 23 LBL 03 3 02 2 34 03 RCL 3 35 23 g x=y 44 CLX 01 1 61 + 33 03 STO 3 22 GTO 01 1 23 LBL 02 2 34 04 RCL 4 34 01 RCL 1 35 21 g x≠y 01 1 51 - 34 02 RCL 2 71 × 24 RTN 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP 35 01 g NOP
R1 used R2 used R3 used R4 used R5 R6 R7 R8 R9 used
Go back to the software library
Go back to the main exhibit hall