arcsinc( 1-y ), for small y
|
07-09-2018, 01:12 AM
(This post was last modified: 07-13-2018 08:03 PM by Albert Chan.)
Post: #8
|
|||
|
|||
RE: arcsinc( 1-y ), for small y
To show weighted e method work, I use Mathematica:
To simplify, assumed m = 1, so e = 1/2 tan(x/2) sinc[x_] := Sin[x] / x; t = Series[1 - sinc[Sqrt[x]], {x, 0, 5}]; t = InverseSeries[t] /. x -> y; exact5 = 1/2 Tan[Sqrt[t] / 2]; w = 4 - 27/56 y; weighted = (w * Sqrt[z + z z] + Sqrt[z]) / (w+1); weighted = weighted /. z -> 3/8d /. d -> y/(1-y); ratio = Series[exact5 / weighted, {y, 0, 5}] // Simplify // Normal ratio // N >> 1 - 9459/25088000 y^3 + 2651751/309084160000 y^4 >> 1. - 3.77033e-4 y^3 + 8.57938e-6 y^4 weighted e estimate is simple, and very good. :-) To check if above is valid, use ratio to improve Five Minute Challenge: First, calculate exact e, with 30 significant digits: FindRoot[sinc[x] == 5280/5281, {x, 0.1}, WorkingPrecision -> 50] >> {x -> 0.033707758809879429348218498305111 ... } e = N[5280/2 Tan[x / 2] /. %, 30] (* Reference: all good digits *) >> 44.4984550191007992545541600167 (* Normally no need for scaling, but above assumed m=1 *) e = N[5280 weighted /. y-> 1/5281, 30] (* 14 digits accurate *) >> 44.4984550191009131676665673849 e = N[5280 weighted ratio /. y-> 1/5281, 30] (* 22 digits accurate *) >> 44.4984550191007992545475544533 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
arcsinc( 1-y ), for small y - Albert Chan - 07-05-2018, 11:43 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-06-2018, 03:22 PM
RE: arcsinc( 1-y ), for small y - Thomas Klemm - 07-06-2018, 09:07 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-06-2018, 11:17 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-07-2018, 06:11 AM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-07-2018, 06:04 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-08-2018, 03:28 AM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-09-2018 01:12 AM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-12-2018, 05:26 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 08-20-2018, 02:20 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 08-20-2018, 03:23 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 08-25-2018, 03:51 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 10-01-2019, 06:03 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 06-18-2020, 11:54 PM
|
User(s) browsing this thread: 2 Guest(s)