arcsinc( 1-y ), for small y
|
08-20-2018, 03:23 PM
(This post was last modified: 06-18-2020 01:10 PM by Albert Chan.)
Post: #11
|
|||
|
|||
RE: arcsinc( 1-y ), for small y
Rearange Acton fromula in terms of arcsinc(k = 1-y):
x = arcsinc(k) ~ sqrt(6y / (1 - 0.3 y)) this is much better than my estimate of sqrt(6y) / (1 - 0.15y) For small y, errors cut down by almost 33% ! To push the idea a bit further, below cut down error (small y) by 97% ! x = arcsinc(k) ~ sqrt(6y / sqrt(1 - 0.6 y)) For y > 0.5, asymptotic formula is better: x ~ Pi / (1 + k + 1.244 k^3) For 0<y<1, above combined setup kept relative error to 0.1% or less. For more accuracy, use either form of Newton's method: f = sin(x) - kx → x = x - (sin(x) - k*x) / (cos(x) - k) f = sin(x)/x - k → x = x + x * (z - k) / (z - cos(x)), where z = sin(x)/x Update: More accurate Asinc (small y), but more complicated formula: http://www.hpmuseum.org/forum/thread-291...ight=Asinc Update2: instead of asymptotic formula, correction also work: For y >= 0.4, asinc(1-y) ~ sqrt(6y / sqrt(1 - 0.6 y)) * (1.001 + y^6/53) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
arcsinc( 1-y ), for small y - Albert Chan - 07-05-2018, 11:43 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-06-2018, 03:22 PM
RE: arcsinc( 1-y ), for small y - Thomas Klemm - 07-06-2018, 09:07 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-06-2018, 11:17 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-07-2018, 06:11 AM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-07-2018, 06:04 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-08-2018, 03:28 AM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-09-2018, 01:12 AM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-12-2018, 05:26 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 08-20-2018, 02:20 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 08-20-2018 03:23 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 08-25-2018, 03:51 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 10-01-2019, 06:03 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 06-18-2020, 11:54 PM
|
User(s) browsing this thread: 1 Guest(s)