arcsinc( 1-y ), for small y
|
08-25-2018, 03:51 PM
(This post was last modified: 10-02-2019 12:01 PM by Albert Chan.)
Post: #12
|
|||
|
|||
RE: arcsinc( 1-y ), for small y
The book Numerical Method that work showed Acton's favorite way of doing interpolation (no difference table)
A variation of Aitken scheme of intepolation (p 94), using post #8 as an example Solve x, such that sinc(x) = k = 1/6.5 ~ 0.153846154 Using my asympotic formula, x ~ Pi/(1 + k + 1.244 k^3) ~ 2.712066499 sinc(2.712) = 0.1535768820, error ~ -0.00027, thus x too high (sinc(x) is decreasing for x = [0, 4.4934]) sinc(2.711) = 0.1539688052, error ~ +0.00013, thus x too low sinc(2.7115) = 0.1537728267, error ~ -0.00007, used for 3 point quadratic fit. Acton variation is to sort the values, interpolated estimate up on top. This ensures top numbers likely the best estimate, with other entries very "tight" Mistakes during manual calculations are easier to spot. All entries below are linear interpolation (against top entry), for k = 1/6.5 PHP Code: sinc(x) x Quadratic fit might not be needed, if interpolated estimate used as 3rd point PHP Code: sinc(x) x For Casio FX-115MS, Interpolation (A,B), (C,D) Formula: With CALC: 0A + B + (C-A)-1(D-B)(X-A) Or, SOLVE: (X-A)(B-0C-D) + (Y-B)(C-A) update: instead of manually getting the points to fit, we can use iterations: sinc(pi/2) = 1/(pi/2) = 2/pi ≈ 0.6366197724 If k ≥ 2/pi: x = sin(x)/k If k < 2/pi: x = pi - asin(kx) For above example, k < 2/pi, we get 2.712 → 2.7111966 → 2.711332599 ... Using Aitken Δ² method, above 3 numbers extrapolated to 2.711312910 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
arcsinc( 1-y ), for small y - Albert Chan - 07-05-2018, 11:43 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-06-2018, 03:22 PM
RE: arcsinc( 1-y ), for small y - Thomas Klemm - 07-06-2018, 09:07 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-06-2018, 11:17 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-07-2018, 06:11 AM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-07-2018, 06:04 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-08-2018, 03:28 AM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-09-2018, 01:12 AM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-12-2018, 05:26 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 08-20-2018, 02:20 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 08-20-2018, 03:23 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 08-25-2018 03:51 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 10-01-2019, 06:03 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 06-18-2020, 11:54 PM
|
User(s) browsing this thread: 2 Guest(s)