arcsinc( 1-y ), for small y
|
10-01-2019, 06:03 PM
(This post was last modified: 03-19-2021 08:37 PM by Albert Chan.)
Post: #13
|
|||
|
|||
RE: arcsinc( 1-y ), for small y
Inspired by Happy Coincidence for the approximate solution of x tan(x) = k.
I tried the same trick for sin(x)/x = k, using Mathematica. > <<Calculus`Pade` > sinc[x_] := Sin[x] / x > Pade[sinc[x], {x,0,4,4}] // Simplify ⇒ (166320 - 22260 x^2 + 551 x^4) / (166320 + 5460 x^2 + 75 x^4) > Solve[166320 - 22260 x^2 + 551 x^4 == 0, x] // N ⇒ {{x → -3.14572}, {x → 3.14572}, {x → -5.52302}, {x → 5.52302}} Pade approximant numerator had 2 roots very close to ±Pi, so solve this instead: \(\Large { x^2-\pi^2 \over sinc(x) } = { x^2-\pi^2 \over k}\) We don't want expression too complicated, and limit it to solving Quadratics: > lhs = Pade[(x^2-Pi^2) / sinc[x], {x,0,4,2}]; > soln = Solve[ Numerator[lhs] * k - Denominator[lhs] * (x^2-Pi^2) == 0, x] Although it look like a quartic, it is really a quadratic, with variables x^2. Instead of solving asinc(k) for x, I choose solving asinc(1-y) for x. This is a rule I learned from Acton's book, "Numerical Methods that works", p71 Quote:Store the small quantites; Compute the larger ones; Never subtract nearly equal quantities. \(\large asinc(1-y) ≈ \Large \sqrt{\frac{12y}{1-0.20409y \;+ \sqrt{1 - 0.792y - 0.0318y^2}}} \) The estimate formula is good for full y range. y = 1.00 → worst over-estimated: abs error = 0.00023, rel error = 0.0075% y = 0.85 → worst under-estimated: abs error = 0.00021, rel error = 0.0075% Previous post example is close to worst case, y = 1-1/6.5 ≈ 0.846154 Using above formula, we get asinc(1/6.5) ≈ 2.71111, under-estimated 0.00020 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
arcsinc( 1-y ), for small y - Albert Chan - 07-05-2018, 11:43 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-06-2018, 03:22 PM
RE: arcsinc( 1-y ), for small y - Thomas Klemm - 07-06-2018, 09:07 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-06-2018, 11:17 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-07-2018, 06:11 AM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-07-2018, 06:04 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-08-2018, 03:28 AM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-09-2018, 01:12 AM
RE: arcsinc( 1-y ), for small y - Albert Chan - 07-12-2018, 05:26 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 08-20-2018, 02:20 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 08-20-2018, 03:23 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 08-25-2018, 03:51 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 10-01-2019 06:03 PM
RE: arcsinc( 1-y ), for small y - Albert Chan - 06-18-2020, 11:54 PM
|
User(s) browsing this thread: 2 Guest(s)