[VA] SRC #007 - 2020 April 1st Ramblings
|
04-02-2020, 10:55 PM
Post: #10
|
|||
|
|||
RE: [VA] SRC #007 - 2020 April 1st Ramblings
(04-01-2020 06:52 PM)Valentin Albillo Wrote: 6) The following expression (where N > 0 is an integer and log2 is the natural logarithm of 2 = 0.693+): Let gap = f(N) = 2*N/log2 - 2/(21/N - 1) Let w = log(2)/N > 0 → f(N) = g(w) = 2/w - 2/(e^w-1) Since e^w-1 = w + w²/2! + w³/3! + ... > w, we have f(N) = g(w) > 0 f(1) ≈ 0.8854 f(2) ≈ 0.9424 f(3) ≈ 0.9615 ... f(2020) ≈ 0.9999 Apply L'Hospital's rule for limit(g(w), w=0): 2*(e^w-1 - w) / (w * (e^w-1)) ⇒ 2*(e^w-1) / (w*e^w + (e^w-1)) ⇒ 2*e^w / (w*e^w + e^w + e^w) = 2 / (w + 2) → f(∞) = g(0) = 2 / (0+2) = 1 → Ceil(2/(21/N - 1)) ≥ [2*N/log2] // LHS > RHS if {2*N/log2} > f(N) Example: 37th convergents of log2/2 = 777451915729368 / 2243252046704767 With N = 777451915729368 // note: this may not be the first exception case LHS = Ceil ( 2243252046704766.000000000000000106 ... ) = 2243252046704767 RHS = Floor(2243252046704766.999999999999999957 ... ) = 2243252046704766 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)