(PC-12xx~14xx) qthsh Tanh-Sinh quadrature
|
04-17-2021, 12:03 AM
Post: #59
|
|||
|
|||
RE: (PC-12xx~14xx) qthsh Tanh-Sinh quadrature
(04-15-2021 07:02 PM)robve Wrote: \( \int_0^{700} e^{-0.01y}\,dy \): We can build exp-sinh transformed integrand, and see the curve, in XCas. XCas> f(x) := exp(-0.01*x) XCas> y := d * exp(sinh(t)) XCas> g := unapply(f(y) * diff(y,t), (d,t)) XCas> g2(d) := [g(d,-t), g(d,t)] XCas> int(g2(1), t=0..5) → [0.995016625083, 99.0049833749] XCas> int(g2(700), t=0..5) → [99.9088118034, 0.0911881965555] XCas> plot(g2(700), t=0..3, color=[blue, red]) The plot showed a nice bell-shaped curve, easy to get area, simply by summing squares. see https://www.hpmuseum.org/forum/thread-13...#pid127590 \(\displaystyle\begin{align} \int_0^∞ f(x)\,dx &= \int_{-∞}^∞ g(t)\,dt = \int_{-∞}^∞ {g(t) + g(-t) \over 2} \,dt \\ &= \int_0^∞ g(-t)\,dt + \int_0^∞ g(t)\,dt \\ &= \int_0^d f(x)\,dx\;\,+ \int_d^∞ f(x)\,dx \end{align} \) Note we take advantage of even functions, and fold the integrals. see Integration trick: clever use of even and odd parts - John D. Cook |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 4 Guest(s)