Accuracy of Integral with epsilon
|
10-10-2021, 02:07 PM
Post: #21
|
|||
|
|||
RE: Accuracy of Integral with epsilon
(10-10-2021 11:51 AM)Albert Chan Wrote:(10-09-2021 09:50 PM)robve Wrote: You do realize that it is a fallacy to assume exp(x) and cosh(x)+sinh(x) equate numerically, in addition to algebraically? You're right. To summarize: 1. cosh(x)+sinh(x) suffers from catastrophic cancellation for negative x, with ~|x| digits lost, e.g. cosh(-10)+sinh(-10)-exp(-10) = -0.000000099 and it is worse when taking exp(-10)/(cosh(-10)+sinh(-10)) = 1.0022 (depending on the calculator's precision) 2. sinh(x) implementations may use sinh(x) = (z+z/(z+1))/2 with z=expm1(x), which improves the accuracy of sinh(x) for x<0 whereas cosh(x) is unaffected, as another example when algebraic identities may not hold numerically. 3. floating point noise not contributed by the above. This integrand is a really bad one to compare numerical integration on calculators. The results are not all that meaningful. Picking eps=10^-4 does not necessarily help to prevent issues, see point 1. I might wager that a less sophisticated calculator may produce a more "accurate" result close to 40. As a funny consequence of playing around with this for a bit, I found a bug in Boost Tanh-Sinh that produces 20 as the answer to the integral \( \int_{-10}^{10} 2\,dx \). I could not believe it at first, but it is a specific problem. - Rob "I count on old friends to remain rational" |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 5 Guest(s)