Automatic differentiation using dual numbers
|
06-19-2022, 11:25 AM
Post: #12
|
|||
|
|||
RE: Automatic differentiation using dual numbers
More Examples
From an older thread: Find the minimum of \(\sqrt[3]{x}(x+4)\). Code: 11▸LBL "f(x)" SOLVER Select Solve Program f'(x) -4 x x=-4 0 x x=0 x -1 -1 from Solve[D[Surd[x,3](x+4),x]=0] From message #52 of hp 35s not very impressive: Numerically find a root of \(\sin(\cos(x)+x)=1\) for \(x \in [0, \pi]\). Code: 11▸LBL "f(x)" 1 XEQ "NEWTON" R/S R/S R/S … 1.096185496720379254068448344585068 1.175888114785594876983050355722717 1.242050787237047966508965780229636 1.297040015847465356429262431517609 1.342780395438986475883038203450154 1.380849045692581522517271141667455 1.412545052274972359330312135368247 1.438942302919224509400448646856456 1.460930716999602583570957867391215 1.479249022592746437337540456509254 1.494511170421290703644758554012951 1.507227829978447782058849865750785 1.517824006751892972090594565180035 1.526653552641516102517803677349702 1.534011159566718715000530836754409 1.540142297317008509515873034239361 1.54525146226124394188595647414023 1.549509032291505688761007830343301 1.553056968300240276217842622504177 1.556013559062516129214210739762696 1.558477371631839185818134801079616 1.560530541211757536883595443592954 1.562241511486046176440960584008961 1.563667317515769249502272196990959 1.564855487741827589822012469653988 1.5658456287488595130191653943798 1.566670745763970142235788700312658 1.567358342992564331745470195675238 1.567931340518708971144634527031736 1.568408838362052654583316328637151 1.568806753176465137666022447896715 1.569138348823290027153250798000587 1.569414678510544465261158813819254 1.569644953239255937574657672473129 1.569836848840342335174954121320105 1.569996761837675236006348072590862 1.570130022666718605870849598706333 1.570241073356391686024755750742321 1.570333615597093564376103876143107 1.570410734130611068186649461486481 1.570474999574977213095175517708114 1.570528554111814785112668043102819 1.570573182892434548623033555727806 1.570610373542906751998078209406487 1.57064136575160961719034182259993 1.570667192592178057949124917149796 1.570688714959325685163863462493728 1.570706650265258827155523702630545 1.570721596353569424513573787698215 1.570734051427489393921579858910183 1.570744430654950406742411512076897 1.570753080010948337990727107957772 1.570760287808507356277721295289301 1.570766294312730998804956970621129 1.570771299748680808303996882049845 1.570775470908511415841082922756551 1.57077894663999092675862234031804 1.5707818432162089638123982822793 1.570784256952696171292749185689969 1.570786266649663336458847535382422 1.570787943608822423042808769861741 1.57078933476841216946339413363803 1.570790483678136851887361443677913 1.570791540762559672731902800264383 1.57079249648789454488183911785543 1.57079249648789454488183911785543 1.57079249648789454488183911785543 1.57079632679489661923132169163975144209... The exact root is \(\frac{\pi}{2}\). We notice the slow convergence since the function is very flat at the root. Obviously we stop getting closer once \(f(x)=0\). From Max of (sin(x))^(e^x): Find the maximum of \(\sin(x)^{e^x}\) between \(13\) and \(15\). Code: 11▸LBL "f(x)" SOLVER Select Solve Program f'(x) 14.13 x x=14.13 14.14 x x=14.14 x 14.13716694115406957308189522475776 14.1371669411540695730818952247577629788... The exact solution is \(\frac{9\pi}{2}\). |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 5 Guest(s)